웨이모
웨이모
웨이모(Waymo)는 알파벳(Alphabet) 산하 자율주행 기술 기업으로, 자율주행 시스템인 Waymo Driver를 기반으로
일반 대중이 이용 가능한 로보택시(무인 호출형 차량) 서비스를 운영한다. 대표 서비스명은 Waymo One이며,
미국 주요 도시에서 상업 운행을 확장해 왔다.
새로운 목차
1. 개요: 웨이모와 Waymo One
2. 핵심 기술: Waymo Driver, 센서·지도·데이터
3. 서비스 운영과 주행 테스트: 서비스 지역, 파트너십, 확장
4. 역사와 시제품: 구글 프로젝트에서 6세대 하드웨어까지
5. 법률·사고·논란: 규제 체계, 리콜, 사회적 쟁점
1. 개요: 웨이모와 Waymo One
웨이모는 무인 자율주행을 목표로 하는 상용 서비스를 중심에 두고 있으며, 이용자는 앱을 통해 차량을 호출해 이동한다.
서비스는 24시간 운영을 표방하며, 도시별로 운행 가능 구역(지오펜스)을 설정해 운행 안전성과 운영 효율을 관리한다.
일부 도시는 자사 앱이 아닌 외부 플랫폼과의 연계를 통해 이용 경험을 제공하기도 한다.
2. 핵심 기술: Waymo Driver, 센서·지도·데이터
2.1 센서 융합과 인지(Perception)
웨이모의 자율주행은 카메라, 라이다(LiDAR), 레이더(Radar) 등 다중 센서의 정보를 결합(센서 융합)해 주변 객체와 도로 상황을 인지하고,
주행 경로를 계획한 뒤 차량을 제어하는 방식으로 설명된다. 웨이모는 자사 공개 자료에서 라이다의 3차원 환경 인지, 카메라의 360도 시야,
레이더의 속도·거리 측정 등 센서별 역할을 구분해 안내한다.
2.2 6세대(6th-gen) Waymo Driver 하드웨어
웨이모는 6세대 자율주행 하드웨어를 공개하며, 비용 최적화와 성능 향상을 목표로 한 센서 구성을 제시했다.
공개된 사양에는 13대 카메라, 4대 라이다, 6대 레이더 및 외부 음향 수신 장치 등이 포함된다.
또한 혹한·우천 등 환경 대응을 위해 센서에 와이퍼, 히터, 분사 장치와 같은 물리적 보조 장치를 적용하는 방향이 언급된다.
2.3 고정밀 지도(HD Map)와 운영 데이터
웨이모 계열 접근법의 핵심 요소로는 고정밀 지도와 실시간 센서 데이터의 정합을 통한 위치 추정 및 안전 주행이 자주 거론된다.
한편, 웨이모는 학계·산업 생태계와의 접점을 위해 Waymo Open Dataset을 제공해 인지·추적 등 연구 과제의 벤치마크를 확산시켜 왔다.
이는 기술 검증과 인재·연구 커뮤니티 형성 측면에서 간접적인 경쟁력으로 작동한다.
2.4 특허 출원과 지식재산 전략(개요)
자율주행 산업에서는 센서 설계, 지도 제작·갱신, 인지·예측 알고리즘, 차량-관제 연동 등 다양한 층위에서 지식재산(IP)이 형성된다.
웨이모의 경우, 외부적으로는 기술 공개와 상용 서비스 확대를 병행하면서도, 분쟁(영업비밀·특허 등)을 통해
핵심 기술의 보호 범위를 다투는 양상이 확인되어 왔다.
3. 서비스 운영과 주행 테스트: 서비스 지역, 파트너십, 확장
3.1 운영 지역(서비스 에어리어)
웨이모는 미국에서 여러 도시를 중심으로 로보택시 서비스를 운영해 왔으며,
공식 안내 자료에서는 샌프란시스코 베이 에어리어, 피닉스, 로스앤젤레스 등이 핵심 서비스 권역으로 제시된다.
또한 오스틴과 애틀랜타에서는 우버(Uber) 플랫폼을 통해 웨이모를 경험하는 형태가 안내된다.
3.2 운영 방식: 지오펜스, 단계적 확장, 고속도로(프리웨이) 적용
웨이모 운영의 일반적 특징은 (1) 제한된 구역에서의 안정적 운행, (2) 데이터 축적과 소프트웨어 업데이트,
(3) 구역·시간대·도로 유형의 점진적 확대이다. 웨이모는 2025년 회고 성격의 공식 글에서
일부 도시에서 고속도로 주행 경험을 제공하고, 이후 더 많은 도시로 확대할 계획을 언급했다.
3.3 파트너십: 차량 플랫폼과 호출 플랫폼
로보택시 사업은 자율주행 소프트웨어만으로 완결되지 않으며, 차량 플랫폼(차종·전장 설계)과
호출·결제·고객지원 플랫폼의 결합이 중요하다. 웨이모는 기존 차량(예: 전기 SUV)을 기반으로 운용해 왔고,
최근에는 특정 목적형 로보택시 플랫폼을 도입하는 방향도 보도되었다.
4. 역사와 시제품: 구글 프로젝트에서 6세대 하드웨어까지
4.1 출발점과 분사
웨이모의 기원은 구글의 자율주행차 프로젝트로 거슬러 올라가며, 이후 알파벳 체제에서 독립 법인 형태로 정리되었다.
초기에는 실험용 차량(개조 차량, 시범 운행) 중심으로 기술 성숙을 추구했고, 시간이 지나며 유료 승객 대상 상용 서비스로 전환됐다.
4.2 상용 로보택시로의 전환
상용 전환의 핵심은 “기술 시연”에서 “운영 품질”로의 무게 중심 이동이다.
즉, 승객 안전 계획, 원격 지원 체계, 차량 유지보수, 운영 지역 내 예외 상황 대응 등 도시 단위의 운영 역량이 경쟁의 일부가 된다.
4.3 시제품 및 차세대 로보택시(Ojai 등)
2026년 CES 국면에서 웨이모의 차세대 로보택시로 보도된 ‘Ojai’는 특정 제조사와의 협업을 통해 제작되는
목적형 전기 밴 형태로 소개되었다. 보도에 따르면 차량은 해외에서 조립된 뒤 미국에서 웨이모의 6세대 자율주행 하드웨어가 통합되는 방식이 언급되며, 웨이모는 기존 운영 도시 외에 다수 도시로 확장을 시사한 바 있다.
5. 법률·사고·논란: 규제 체계, 리콜, 사회적 쟁점
5.1 규제 구조: 캘리포니아 DMV·CPUC의 이원 체계
캘리포니아에서는 자율주행차의 시험·배치(테스트/디플로이먼트) 허가를 주로 DMV가 다루고, 유상 여객 운송과 관련한 프로그램·보고 의무 등은 CPUC 프로그램 구조 안에서 운영되는 것으로 안내된다.
실제로 웨이모의 운행 가능 구역 확대는 DMV 문서에서 허가·갱신 형태로 공지되며, CPUC는 승객 안전 계획 및 정기 보고와 같은 틀을 제시한다.
5.2 리콜과 소프트웨어 업데이트
자율주행 시스템은 소프트웨어가 안전 성능에 직접적인 영향을 미치기 때문에, 결함 가능성이 확인되면 대규모 소프트웨어 업데이트 또는 리콜 형태로 시정되는 사례가 발생한다.
웨이모는 2024년 2월 “이전 소프트웨어”에 대한 자발적 리콜(업데이트)을 공지했으며, 2025년에는 미국 도로교통안전국(NHTSA) 리콜 문서에서도 소프트웨어 업데이트를 통한 시정 내용이 확인된다.
5.3 사고·운영 장애와 안전성 논쟁
로보택시는 실제 도로 환경의 예외 상황(공사 구간 변화, 신호 장애, 돌발 객체 등)에서 운영 안정성이 시험대에 오른다.
2025년 말 샌프란시스코의 대규모 정전 상황에서 웨이모 차량이 교차로 등에서 운행 장애를 일으켜 교통 및 긴급차량 통행에 영향을 주었다는 보도가 있었고, 2026년 1월에는 규제 강화를 요구하는 운전기사 단체의 시위가 보도되며 사회적 갈등이 부각되었다.
또한 피닉스에서 차량이 경전철 선로 위에 정차해 승객이 대피하는 영상이 보도되는 등, 개별 사건이 기술 신뢰도 논쟁으로 연결되는 양상이 나타난다.
5.4 법률 분쟁: 영업비밀(트레이드 시크릿) 소송의 의미
웨이모는 자율주행 라이다 등 핵심 기술을 둘러싼 영업비밀 분쟁의 대표 사례로 자주 언급되는 웨이모-우버 소송을 겪었으며, 2018년 합의로 종료되었다.
이 사건은 자율주행 산업에서 인력 이동, 부품 설계, 소프트웨어 자산이 기업 경쟁력의 핵심이라는 점을 사회적으로 각인시킨 사례로 평가된다.
출처
Waymo 공식 웹사이트(서비스 운영 도시 안내): https://waymo.com/
Waymo 고객지원(서비스 에어리어): https://support.google.com/waymo/answer/9059119?hl=en
Waymo 블로그(6세대 Waymo Driver 소개, 2024-08-19): https://waymo.com/blog/2024/08/meet-the-6th-generation-waymo-driver
Waymo 블로그(자발적 리콜 공지, 2024-02-13): https://waymo.com/blog/2024/02/voluntary-recall-of-our-previous-software
NHTSA 리콜 문서(Part 573 Safety Recall Report 25E-034, PDF): https://static.nhtsa.gov/odi/rcl/2025/RCLRPT-25E034-2471.PDF
California DMV(자율주행 프로그램 안내): https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/
California DMV(웨이모 허가 구역/확장 공지): https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-testing-permit-holders/waymo-approved-areas-of-operation-for-driverless-testing-and-deployment/
California Public Utilities Commission(CPUC, AV 승객 서비스 프로그램): https://www.cpuc.ca.gov/regulatory-services/licensing/transportation-licensing-and-analysis-branch/autonomous-vehicle-programs
California Public Utilities Commission(CPUC, 분기 보고 안내): https://www.cpuc.ca.gov/regulatory-services/licensing/transportation-licensing-and-analysis-branch/autonomous-vehicle-programs/quarterly-reporting
AP News(샌프란시스코 시위 및 규제 논의 보도, 2026-01-09): https://apnews.com/article/ae899573f4b12aa1844656fa5f7365ec
San Francisco Chronicle(정전 시 웨이모 운영 장애 보도, 2026-01): https://www.sfchronicle.com/sf/article/daniel-lurie-waymo-blackouts-pge-21282099.php
PEOPLE(피닉스 경전철 선로 정차 사건 보도, 2026-01): https://people.com/passenger-forced-to-flee-self-driving-vehicle-after-stops-path-of-an-oncoming-train-11884070
The Guardian(웨이모-우버 합의 보도, 2018-02-09): https://www.theguardian.com/us-news/2018/feb/09/uber-waymo-reach-settlement-trade-secrets-trial
Uber Newsroom(웨이모-우버 합의 공지, 2018-02-09): https://www.uber.com/en-NO/newsroom/uber-waymo-settlement/
arXiv / CVPR 2020(웨이모 오픈 데이터셋 논문 PDF): https://openaccess.thecvf.com/content_CVPR_2020/papers/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.pdf
Car and Driver(차세대 로보택시 Ojai 보도, 2026-01): https://www.caranddriver.com/news/a69938250/waymo-ojai-autonomous-robotaxi-details/
(Waymo)가 구글
구글
목차
구글(Google) 개요
1. 개념 정의
1.1. 기업 정체성 및 사명
1.2. '구글'이라는 이름의 유래
2. 역사 및 발전 과정
2.1. 창립 및 초기 성장
2.2. 주요 서비스 확장 및 기업공개(IPO)
2.3. 알파벳(Alphabet Inc.) 설립
3. 핵심 기술 및 원리
3.1. 검색 엔진 알고리즘 (PageRank)
3.2. 광고 플랫폼 기술
3.3. 클라우드 인프라 및 데이터 처리
3.4. 인공지능(AI) 및 머신러닝
4. 주요 사업 분야 및 서비스
4.1. 검색 및 광고
4.2. 모바일 플랫폼 및 하드웨어
4.3. 클라우드 컴퓨팅 (Google Cloud Platform)
4.4. 콘텐츠 및 생산성 도구
5. 현재 동향
5.1. 생성형 AI 기술 경쟁 심화
5.2. 클라우드 시장 성장 및 AI 인프라 투자 확대
5.3. 글로벌 시장 전략 및 현지화 노력
6. 비판 및 논란
6.1. 반독점 및 시장 지배력 남용
6.2. 개인 정보 보호 문제
6.3. 기업 문화 및 윤리적 문제
7. 미래 전망
7.1. AI 중심의 혁신 가속화
7.2. 새로운 성장 동력 발굴
7.3. 규제 환경 변화 및 사회적 책임
구글(Google) 개요
구글은 전 세계 정보의 접근성을 높이고 유용하게 활용할 수 있도록 돕는 것을 사명으로 하는 미국의 다국적 기술 기업이다. 검색 엔진을 시작으로 모바일 운영체제, 클라우드 컴퓨팅, 인공지능 등 다양한 분야로 사업 영역을 확장하며 글로벌 IT 산업을 선도하고 있다. 구글은 디지털 시대의 정보 접근 방식을 혁신하고, 일상생활과 비즈니스 환경에 지대한 영향을 미치며 현대 사회의 필수적인 인프라로 자리매김했다.
1. 개념 정의
구글은 검색 엔진을 기반으로 광고, 클라우드, 모바일 운영체제 등 광범위한 서비스를 제공하는 글로벌 기술 기업이다. "전 세계의 모든 정보를 체계화하여 모든 사용자가 유익하게 사용할 수 있도록 한다"는 사명을 가지고 있다. 이러한 사명은 구글이 단순한 검색 서비스를 넘어 정보의 조직화와 접근성 향상에 얼마나 집중하는지를 보여준다.
1.1. 기업 정체성 및 사명
구글은 인터넷을 통해 정보를 공유하는 산업에서 가장 큰 기업 중 하나로, 전 세계 검색 시장의 90% 이상을 점유하고 있다. 이는 구글이 정보 탐색의 표준으로 인식되고 있음을 의미한다. 구글의 사명인 "전 세계의 정보를 조직화하여 보편적으로 접근 가능하고 유용하게 만드는 것(to organize the world's information and make it universally accessible and useful)"은 구글의 모든 제품과 서비스 개발의 근간이 된다. 이 사명은 단순히 정보를 나열하는 것을 넘어, 사용자가 필요로 하는 정보를 효과적으로 찾아 활용할 수 있도록 돕는다는 철학을 담고 있다.
1.2. '구글'이라는 이름의 유래
'구글'이라는 이름은 10의 100제곱을 의미하는 수학 용어 '구골(Googol)'에서 유래했다. 이는 창업자들이 방대한 웹 정보를 체계화하고 무한한 정보의 바다를 탐색하려는 목표를 반영한다. 이 이름은 당시 인터넷에 폭발적으로 증가하던 정보를 효율적으로 정리하겠다는 그들의 야심 찬 비전을 상징적으로 보여준다.
2. 역사 및 발전 과정
구글은 스탠퍼드 대학교의 연구 프로젝트에서 시작하여 현재의 글로벌 기술 기업으로 성장했다. 그 과정에서 혁신적인 기술 개발과 과감한 사업 확장을 통해 디지털 시대를 이끄는 핵심 주체로 부상했다.
2.1. 창립 및 초기 성장
1996년 래리 페이지(Larry Page)와 세르게이 브린(Sergey Brin)은 스탠퍼드 대학교에서 '백럽(BackRub)'이라는 검색 엔진 프로젝트를 시작했다. 이 프로젝트는 기존 검색 엔진들이 키워드 일치에만 의존하던 것과 달리, 웹페이지 간의 링크 구조를 분석하여 페이지의 중요도를 평가하는 'PageRank' 알고리즘을 개발했다. 1998년 9월 4일, 이들은 'Google Inc.'를 공식 창립했으며, PageRank를 기반으로 검색 정확도를 획기적으로 향상시켜 빠르게 사용자들의 신뢰를 얻었다. 초기에는 실리콘밸리의 한 차고에서 시작된 작은 스타트업이었으나, 그들의 혁신적인 접근 방식은 곧 인터넷 검색 시장의 판도를 바꾸기 시작했다.
2.2. 주요 서비스 확장 및 기업공개(IPO)
구글은 검색 엔진의 성공에 안주하지 않고 다양한 서비스로 사업 영역을 확장했다. 2000년에는 구글 애드워즈(Google AdWords, 현 Google Ads)를 출시하며 검색 기반의 타겟 광고 사업을 시작했고, 이는 구글의 주요 수익원이 되었다. 이후 2004년 Gmail을 선보여 이메일 서비스 시장에 혁신을 가져왔으며, 2005년에는 Google Maps를 출시하여 지리 정보 서비스의 새로운 기준을 제시했다. 2006년에는 세계 최대 동영상 플랫폼인 YouTube를 인수하여 콘텐츠 시장에서의 영향력을 확대했다. 2008년에는 모바일 운영체제 안드로이드(Android)를 도입하여 스마트폰 시장의 지배적인 플랫폼으로 성장시켰다. 이러한 서비스 확장은 2004년 8월 19일 나스닥(NASDAQ)에 상장된 구글의 기업 가치를 더욱 높이는 계기가 되었다.
2.3. 알파벳(Alphabet Inc.) 설립
2015년 8월, 구글은 지주회사인 알파벳(Alphabet Inc.)을 설립하며 기업 구조를 대대적으로 재편했다. 이는 구글의 핵심 인터넷 사업(검색, 광고, YouTube, Android 등)을 'Google'이라는 자회사로 유지하고, 자율주행차(Waymo), 생명과학(Verily, Calico), 인공지능 연구(DeepMind) 등 미래 성장 동력이 될 다양한 신사업을 독립적인 자회사로 분리 운영하기 위함이었다. 이러한 구조 개편은 각 사업 부문의 독립성과 투명성을 높이고, 혁신적인 프로젝트에 대한 투자를 가속화하기 위한 전략적 결정이었다. 래리 페이지와 세르게이 브린은 알파벳의 최고 경영진으로 이동하며 전체 그룹의 비전과 전략을 총괄하게 되었다.
3. 핵심 기술 및 원리
구글의 성공은 단순히 많은 서비스를 제공하는 것을 넘어, 그 기반에 깔린 혁신적인 기술 스택과 독자적인 알고리즘에 있다. 이들은 정보의 조직화, 효율적인 광고 시스템, 대규모 데이터 처리, 그리고 최첨단 인공지능 기술을 통해 구글의 경쟁 우위를 확립했다.
3.1. 검색 엔진 알고리즘 (PageRank)
구글 검색 엔진의 핵심은 'PageRank' 알고리즘이다. 이 알고리즘은 웹페이지의 중요도를 해당 페이지로 연결되는 백링크(다른 웹사이트로부터의 링크)의 수와 질을 분석하여 결정한다. 마치 학술 논문에서 인용이 많이 될수록 중요한 논문으로 평가받는 것과 유사하다. PageRank는 단순히 키워드 일치도를 넘어, 웹페이지의 권위와 신뢰도를 측정함으로써 사용자에게 더 관련성 높고 정확한 검색 결과를 제공하는 데 기여했다. 이는 초기 인터넷 검색의 질을 한 단계 끌어올린 혁신적인 기술로 평가받는다.
3.2. 광고 플랫폼 기술
구글 애드워즈(Google Ads)와 애드센스(AdSense)는 구글의 주요 수익원이며, 정교한 타겟 맞춤형 광고를 제공하는 기술이다. Google Ads는 광고주가 특정 검색어, 사용자 인구 통계, 관심사 등에 맞춰 광고를 노출할 수 있도록 돕는다. 반면 AdSense는 웹사이트 운영자가 자신의 페이지에 구글 광고를 게재하고 수익을 얻을 수 있도록 하는 플랫폼이다. 이 시스템은 사용자 데이터를 분석하고 검색어의 맥락을 이해하여 가장 관련성 높은 광고를 노출함으로써, 광고 효율성을 극대화하고 사용자 경험을 저해하지 않으면서도 높은 수익을 창출하는 비즈니스 모델을 구축했다.
3.3. 클라우드 인프라 및 데이터 처리
Google Cloud Platform(GCP)은 구글의 대규모 데이터 처리 및 저장 노하우를 기업 고객에게 제공하는 서비스이다. GCP는 전 세계에 분산된 데이터센터와 네트워크 인프라를 기반으로 컴퓨팅, 스토리지, 데이터베이스, 머신러닝 등 다양한 클라우드 서비스를 제공한다. 특히, '빅쿼리(BigQuery)'와 같은 데이터 웨어하우스는 페타바이트(petabyte) 규모의 데이터를 빠르고 효율적으로 분석할 수 있도록 지원하며, 기업들이 방대한 데이터를 통해 비즈니스 인사이트를 얻을 수 있게 돕는다. 이러한 클라우드 인프라는 구글 자체 서비스의 운영뿐만 아니라, 전 세계 기업들의 디지털 전환을 가속화하는 핵심 동력으로 작용하고 있다.
3.4. 인공지능(AI) 및 머신러닝
구글은 검색 결과의 개선, 추천 시스템, 자율주행, 음성 인식 등 다양한 서비스에 AI와 머신러닝 기술을 광범위하게 적용하고 있다. 특히, 딥러닝(Deep Learning) 기술을 활용하여 이미지 인식, 자연어 처리(Natural Language Processing, NLP) 분야에서 세계적인 수준의 기술력을 보유하고 있다. 최근에는 생성형 AI 모델인 '제미나이(Gemini)'를 통해 텍스트, 이미지, 오디오, 비디오 등 다양한 형태의 정보를 이해하고 생성하는 멀티모달(multimodal) AI 기술 혁신을 가속화하고 있다. 이러한 AI 기술은 구글 서비스의 개인화와 지능화를 담당하며 사용자 경험을 지속적으로 향상시키고 있다.
4. 주요 사업 분야 및 서비스
구글은 검색 엔진이라는 출발점을 넘어, 현재는 전 세계인의 일상과 비즈니스에 깊숙이 관여하는 광범위한 제품과 서비스를 제공하는 기술 대기업으로 성장했다.
4.1. 검색 및 광고
구글 검색은 전 세계에서 가장 많이 사용되는 검색 엔진으로, 2024년 10월 기준으로 전 세계 검색 시장의 약 91%를 점유하고 있다. 이는 구글이 정보 탐색의 사실상 표준임을 의미한다. 검색 광고(Google Ads)와 유튜브 광고 등 광고 플랫폼은 구글 매출의 대부분을 차지하는 핵심 사업이다. 2023년 알파벳의 총 매출 약 3,056억 달러 중 광고 매출이 약 2,378억 달러로, 전체 매출의 77% 이상을 차지했다. 이러한 광고 수익은 구글이 다양한 무료 서비스를 제공할 수 있는 기반이 된다.
4.2. 모바일 플랫폼 및 하드웨어
안드로이드(Android) 운영체제는 전 세계 스마트폰 시장을 지배하며, 2023년 기준 글로벌 모바일 운영체제 시장의 70% 이상을 차지한다. 안드로이드는 다양한 제조사에서 채택되어 전 세계 수십억 명의 사용자에게 구글 서비스를 제공하는 통로 역할을 한다. 또한, 구글은 자체 하드웨어 제품군도 확장하고 있다. 픽셀(Pixel) 스마트폰은 구글의 AI 기술과 안드로이드 운영체제를 최적화하여 보여주는 플래그십 기기이며, 네스트(Nest) 기기(스마트 스피커, 스마트 온도 조절기 등)는 스마트 홈 생태계를 구축하고 있다. 이 외에도 크롬캐스트(Chromecast), 핏빗(Fitbit) 등 다양한 기기를 통해 사용자 경험을 확장하고 있다.
4.3. 클라우드 컴퓨팅 (Google Cloud Platform)
Google Cloud Platform(GCP)은 기업 고객에게 컴퓨팅, 스토리지, 네트워킹, 데이터 분석, AI/머신러닝 등 광범위한 클라우드 서비스를 제공한다. 아마존 웹 서비스(AWS)와 마이크로소프트 애저(Azure)에 이어 글로벌 클라우드 시장에서 세 번째로 큰 점유율을 가지고 있으며, 2023년 4분기 기준 약 11%의 시장 점유율을 기록했다. GCP는 높은 성장률을 보이며 알파벳의 주요 성장 동력이 되고 있으며, 특히 AI 서비스 확산과 맞물려 데이터센터 증설 및 AI 인프라 확충에 대규모 투자를 진행하고 있다.
4.4. 콘텐츠 및 생산성 도구
유튜브(YouTube)는 세계 최대의 동영상 플랫폼으로, 매월 20억 명 이상의 활성 사용자가 방문하며 수십억 시간의 동영상을 시청한다. 유튜브는 엔터테인먼트를 넘어 교육, 뉴스, 커뮤니티 등 다양한 역할을 수행하며 디지털 콘텐츠 소비의 중심이 되었다. 또한, Gmail, Google Docs, Google Drive, Google Calendar 등으로 구성된 Google Workspace는 개인 및 기업의 생산성을 지원하는 주요 서비스이다. 이들은 클라우드 기반으로 언제 어디서든 문서 작성, 협업, 파일 저장 및 공유를 가능하게 하여 업무 효율성을 크게 향상시켰다.
5. 현재 동향
구글은 급변하는 기술 환경 속에서 특히 인공지능 기술의 발전을 중심으로 다양한 산업 분야에서 혁신을 주도하고 있다. 이는 구글의 미래 성장 동력을 확보하고 시장 리더십을 유지하기 위한 핵심 전략이다.
5.1. 생성형 AI 기술 경쟁 심화
구글은 챗GPT(ChatGPT)의 등장 이후 생성형 AI 기술 개발에 전사적인 역량을 집중하고 있다. 특히, 멀티모달 기능을 갖춘 '제미나이(Gemini)' 모델을 통해 텍스트, 이미지, 오디오, 비디오 등 다양한 형태의 정보를 통합적으로 이해하고 생성하는 능력을 선보였다. 구글은 제미나이를 검색, 클라우드, 안드로이드 등 모든 핵심 서비스에 통합하며 사용자 경험을 혁신하고 있다. 예를 들어, 구글 검색에 AI 오버뷰(AI Overviews) 기능을 도입하여 복잡한 질문에 대한 요약 정보를 제공하고, AI 모드를 통해 보다 대화형 검색 경험을 제공하는 등 AI 업계의 판도를 변화시키는 주요 동향을 이끌고 있다.
5.2. 클라우드 시장 성장 및 AI 인프라 투자 확대
Google Cloud는 높은 성장률을 보이며 알파벳의 주요 성장 동력이 되고 있다. 2023년 3분기에는 처음으로 분기 영업이익을 기록하며 수익성을 입증했다. AI 서비스 확산과 맞물려, 구글은 데이터센터 증설 및 AI 인프라 확충에 대규모 투자를 진행하고 있다. 이는 기업 고객들에게 고성능 AI 모델 학습 및 배포를 위한 강력한 컴퓨팅 자원을 제공하고, 자체 AI 서비스의 안정적인 운영을 보장하기 위함이다. 이러한 투자는 클라우드 시장에서의 경쟁력을 강화하고 미래 AI 시대의 핵심 인프라 제공자로서의 입지를 굳히는 전략이다.
5.3. 글로벌 시장 전략 및 현지화 노력
구글은 전 세계 각국 시장에서의 영향력을 확대하기 위해 현지화된 서비스를 제공하고 있으며, 특히 AI 기반 멀티모달 검색 기능 강화 등 사용자 경험 혁신에 주력하고 있다. 예를 들어, 특정 지역의 문화와 언어적 특성을 반영한 검색 결과를 제공하거나, 현지 콘텐츠 크리에이터를 지원하여 유튜브 생태계를 확장하는 식이다. 또한, 개발도상국 시장에서는 저렴한 스마트폰에서도 구글 서비스를 원활하게 이용할 수 있도록 경량화된 앱을 제공하는 등 다양한 현지화 전략을 펼치고 있다. 이는 글로벌 사용자 기반을 더욱 공고히 하고, 새로운 시장에서의 성장을 모색하기 위한 노력이다.
6. 비판 및 논란
구글은 혁신적인 기술과 서비스로 전 세계에 지대한 영향을 미치고 있지만, 그 막대한 시장 지배력과 데이터 활용 방식 등으로 인해 반독점, 개인 정보 보호, 기업 윤리 등 다양한 측면에서 비판과 논란에 직면해 있다.
6.1. 반독점 및 시장 지배력 남용
구글은 검색 및 온라인 광고 시장에서의 독점적 지위 남용 혐의로 전 세계 여러 국가에서 규제 당국의 조사를 받고 소송 및 과징금 부과를 경험했다. 2023년 9월, 미국 법무부(DOJ)는 구글이 검색 시장에서 불법적인 독점 행위를 했다며 반독점 소송을 제기했으며, 이는 20년 만에 미국 정부가 제기한 가장 큰 규모의 반독점 소송 중 하나이다. 유럽연합(EU) 역시 구글이 안드로이드 운영체제를 이용해 검색 시장 경쟁을 제한하고, 광고 기술 시장에서 독점적 지위를 남용했다며 수십억 유로의 과징금을 부과한 바 있다. 이러한 사례들은 구글의 시장 지배력이 혁신을 저해하고 공정한 경쟁을 방해할 수 있다는 우려를 반영한다.
6.2. 개인 정보 보호 문제
구글은 이용자 동의 없는 행태 정보 수집, 추적 기능 해제 후에도 데이터 수집 등 개인 정보 보호 위반으로 여러 차례 과징금 부과 및 배상 평결을 받았다. 2023년 12월, 프랑스 데이터 보호 기관(CNIL)은 구글이 사용자 동의 없이 광고 목적으로 개인 데이터를 수집했다며 1억 5천만 유로의 과징금을 부과했다. 또한, 구글은 공개적으로 사용 가능한 웹 데이터를 AI 모델 학습에 활용하겠다는 정책을 변경하며 개인 정보 보호 및 저작권 침해 가능성에 대한 논란을 야기했다. 이러한 논란은 구글이 방대한 사용자 데이터를 어떻게 수집하고 활용하는지에 대한 투명성과 윤리적 기준에 대한 사회적 요구가 커지고 있음을 보여준다.
6.3. 기업 문화 및 윤리적 문제
구글은 군사용 AI 기술 개발 참여(프로젝트 메이븐), 중국 정부 검열 협조(프로젝트 드래곤플라이), AI 기술 편향성 지적 직원에 대한 부당 해고 논란 등 기업 윤리 및 내부 소통 문제로 비판을 받았다. 특히, AI 윤리 연구원들의 해고는 구글의 AI 개발 방향과 윤리적 가치에 대한 심각한 의문을 제기했다. 이러한 사건들은 구글과 같은 거대 기술 기업이 기술 개발의 윤리적 책임과 사회적 영향력을 어떻게 관리해야 하는지에 대한 중요한 질문을 던진다.
7. 미래 전망
구글은 인공지능 기술을 중심으로 지속적인 혁신과 새로운 성장 동력 발굴을 통해 미래를 준비하고 있다. 급변하는 기술 환경과 사회적 요구 속에서 구글의 미래 전략은 AI 기술의 발전 방향과 밀접하게 연관되어 있다.
7.1. AI 중심의 혁신 가속화
AI는 구글의 모든 서비스에 통합되며, 검색 기능의 진화(AI Overviews, AI 모드), 새로운 AI 기반 서비스 개발 등 AI 중심의 혁신이 가속화될 것으로 전망된다. 구글은 검색 엔진을 단순한 정보 나열을 넘어, 사용자의 복잡한 질문에 대한 심층적인 답변과 개인화된 경험을 제공하는 'AI 비서' 형태로 발전시키려 하고 있다. 또한, 양자 컴퓨팅, 헬스케어(Verily, Calico), 로보틱스 등 신기술 분야에도 적극적으로 투자하며 장기적인 성장 동력을 확보하려 노력하고 있다. 이러한 AI 중심의 접근은 구글이 미래 기술 패러다임을 선도하려는 의지를 보여준다.
7.2. 새로운 성장 동력 발굴
클라우드 컴퓨팅과 AI 기술을 기반으로 기업용 솔루션 시장에서의 입지를 강화하고 있다. Google Cloud는 AI 기반 솔루션을 기업에 제공하며 엔터프라이즈 시장에서의 점유율을 확대하고 있으며, 이는 구글의 새로운 주요 수익원으로 자리매김하고 있다. 또한, 자율주행 기술 자회사인 웨이모(Waymo)는 미국 일부 도시에서 로보택시 서비스를 상용화하며 미래 모빌리티 시장에서의 잠재력을 보여주고 있다. 이러한 신사업들은 구글이 검색 및 광고 의존도를 줄이고 다각화된 수익 구조를 구축하는 데 기여할 것이다.
7.3. 규제 환경 변화 및 사회적 책임
각국 정부의 반독점 및 개인 정보 보호 규제 강화에 대응하고, AI의 윤리적 사용과 지속 가능한 기술 발전에 대한 사회적 책임을 다하는 것이 구글의 중요한 과제가 될 것이다. 구글은 규제 당국과의 협력을 통해 투명성을 높이고, AI 윤리 원칙을 수립하여 기술 개발 과정에 반영하는 노력을 지속해야 할 것이다. 또한, 디지털 격차 해소, 환경 보호 등 사회적 가치 실현에도 기여함으로써 기업 시민으로서의 역할을 다하는 것이 미래 구글의 지속 가능한 성장에 필수적인 요소로 작용할 것이다.
참고 문헌
StatCounter. (2024). Search Engine Market Share Worldwide. Available at: https://gs.statcounter.com/search-engine-market-share
Alphabet Inc. (2024). Q4 2023 Earnings Release. Available at: https://abc.xyz/investor/earnings/
Statista. (2023). Mobile operating systems' market share worldwide from January 2012 to July 2023. Available at: https://www.statista.com/statistics/266136/global-market-share-held-by-mobile-operating-systems/
Synergy Research Group. (2024). Cloud Market Share Q4 2023. Available at: https://www.srgresearch.com/articles/microsoft-and-google-gain-market-share-in-q4-cloud-market-growth-slows-to-19-for-full-year-2023
YouTube. (2023). YouTube for Press - Statistics. Available at: https://www.youtube.com/about/press/data/
Google. (2023). Introducing Gemini: Our largest and most capable AI model. Available at: https://blog.google/technology/ai/google-gemini-ai/
Google. (2024). What to know about AI Overviews and new AI experiences in Search. Available at: https://blog.google/products/search/ai-overviews-google-search-generative-ai/
Alphabet Inc. (2023). Q3 2023 Earnings Release. Available at: https://abc.xyz/investor/earnings/
U.S. Department of Justice. (2023). Justice Department Files Antitrust Lawsuit Against Google for Monopolizing Digital Advertising Technologies. Available at: https://www.justice.gov/opa/pr/justice-department-files-antitrust-lawsuit-against-google-monopolizing-digital-advertising
European Commission. (2018). Antitrust: Commission fines Google €4.34 billion for illegal practices regarding Android mobile devices. Available at: https://ec.europa.eu/commission/presscorner/detail/en/IP_18_4581
European Commission. (2021). Antitrust: Commission fines Google €2.42 billion for abusing dominance as search engine. Available at: https://ec.europa.eu/commission/presscorner/detail/en/IP_17_1784
CNIL. (2023). Cookies: the CNIL fines GOOGLE LLC and GOOGLE IRELAND LIMITED 150 million euros. Available at: https://www.cnil.fr/en/cookies-cnil-fines-google-llc-and-google-ireland-limited-150-million-euros
The Verge. (2021). Google fired another AI ethics researcher. Available at: https://www.theverge.com/2021/2/19/22292323/google-fired-another-ai-ethics-researcher-margaret-mitchell
Waymo. (2024). Where Waymo is available. Available at: https://waymo.com/where-we-are/
```
딥마인드(Google DeepMind)의 최신 AI 모델인 ‘지니 3(Genie 3)’를 기반으로 한 ‘웨이모 월드 모델(Waymo
웨이모
웨이모(Waymo)는 알파벳(Alphabet) 산하 자율주행 기술 기업으로, 자율주행 시스템인 Waymo Driver를 기반으로
일반 대중이 이용 가능한 로보택시(무인 호출형 차량) 서비스를 운영한다. 대표 서비스명은 Waymo One이며,
미국 주요 도시에서 상업 운행을 확장해 왔다.
새로운 목차
1. 개요: 웨이모와 Waymo One
2. 핵심 기술: Waymo Driver, 센서·지도·데이터
3. 서비스 운영과 주행 테스트: 서비스 지역, 파트너십, 확장
4. 역사와 시제품: 구글 프로젝트에서 6세대 하드웨어까지
5. 법률·사고·논란: 규제 체계, 리콜, 사회적 쟁점
1. 개요: 웨이모와 Waymo One
웨이모는 무인 자율주행을 목표로 하는 상용 서비스를 중심에 두고 있으며, 이용자는 앱을 통해 차량을 호출해 이동한다.
서비스는 24시간 운영을 표방하며, 도시별로 운행 가능 구역(지오펜스)을 설정해 운행 안전성과 운영 효율을 관리한다.
일부 도시는 자사 앱이 아닌 외부 플랫폼과의 연계를 통해 이용 경험을 제공하기도 한다.
2. 핵심 기술: Waymo Driver, 센서·지도·데이터
2.1 센서 융합과 인지(Perception)
웨이모의 자율주행은 카메라, 라이다(LiDAR), 레이더(Radar) 등 다중 센서의 정보를 결합(센서 융합)해 주변 객체와 도로 상황을 인지하고,
주행 경로를 계획한 뒤 차량을 제어하는 방식으로 설명된다. 웨이모는 자사 공개 자료에서 라이다의 3차원 환경 인지, 카메라의 360도 시야,
레이더의 속도·거리 측정 등 센서별 역할을 구분해 안내한다.
2.2 6세대(6th-gen) Waymo Driver 하드웨어
웨이모는 6세대 자율주행 하드웨어를 공개하며, 비용 최적화와 성능 향상을 목표로 한 센서 구성을 제시했다.
공개된 사양에는 13대 카메라, 4대 라이다, 6대 레이더 및 외부 음향 수신 장치 등이 포함된다.
또한 혹한·우천 등 환경 대응을 위해 센서에 와이퍼, 히터, 분사 장치와 같은 물리적 보조 장치를 적용하는 방향이 언급된다.
2.3 고정밀 지도(HD Map)와 운영 데이터
웨이모 계열 접근법의 핵심 요소로는 고정밀 지도와 실시간 센서 데이터의 정합을 통한 위치 추정 및 안전 주행이 자주 거론된다.
한편, 웨이모는 학계·산업 생태계와의 접점을 위해 Waymo Open Dataset을 제공해 인지·추적 등 연구 과제의 벤치마크를 확산시켜 왔다.
이는 기술 검증과 인재·연구 커뮤니티 형성 측면에서 간접적인 경쟁력으로 작동한다.
2.4 특허 출원과 지식재산 전략(개요)
자율주행 산업에서는 센서 설계, 지도 제작·갱신, 인지·예측 알고리즘, 차량-관제 연동 등 다양한 층위에서 지식재산(IP)이 형성된다.
웨이모의 경우, 외부적으로는 기술 공개와 상용 서비스 확대를 병행하면서도, 분쟁(영업비밀·특허 등)을 통해
핵심 기술의 보호 범위를 다투는 양상이 확인되어 왔다.
3. 서비스 운영과 주행 테스트: 서비스 지역, 파트너십, 확장
3.1 운영 지역(서비스 에어리어)
웨이모는 미국에서 여러 도시를 중심으로 로보택시 서비스를 운영해 왔으며,
공식 안내 자료에서는 샌프란시스코 베이 에어리어, 피닉스, 로스앤젤레스 등이 핵심 서비스 권역으로 제시된다.
또한 오스틴과 애틀랜타에서는 우버(Uber) 플랫폼을 통해 웨이모를 경험하는 형태가 안내된다.
3.2 운영 방식: 지오펜스, 단계적 확장, 고속도로(프리웨이) 적용
웨이모 운영의 일반적 특징은 (1) 제한된 구역에서의 안정적 운행, (2) 데이터 축적과 소프트웨어 업데이트,
(3) 구역·시간대·도로 유형의 점진적 확대이다. 웨이모는 2025년 회고 성격의 공식 글에서
일부 도시에서 고속도로 주행 경험을 제공하고, 이후 더 많은 도시로 확대할 계획을 언급했다.
3.3 파트너십: 차량 플랫폼과 호출 플랫폼
로보택시 사업은 자율주행 소프트웨어만으로 완결되지 않으며, 차량 플랫폼(차종·전장 설계)과
호출·결제·고객지원 플랫폼의 결합이 중요하다. 웨이모는 기존 차량(예: 전기 SUV)을 기반으로 운용해 왔고,
최근에는 특정 목적형 로보택시 플랫폼을 도입하는 방향도 보도되었다.
4. 역사와 시제품: 구글 프로젝트에서 6세대 하드웨어까지
4.1 출발점과 분사
웨이모의 기원은 구글의 자율주행차 프로젝트로 거슬러 올라가며, 이후 알파벳 체제에서 독립 법인 형태로 정리되었다.
초기에는 실험용 차량(개조 차량, 시범 운행) 중심으로 기술 성숙을 추구했고, 시간이 지나며 유료 승객 대상 상용 서비스로 전환됐다.
4.2 상용 로보택시로의 전환
상용 전환의 핵심은 “기술 시연”에서 “운영 품질”로의 무게 중심 이동이다.
즉, 승객 안전 계획, 원격 지원 체계, 차량 유지보수, 운영 지역 내 예외 상황 대응 등 도시 단위의 운영 역량이 경쟁의 일부가 된다.
4.3 시제품 및 차세대 로보택시(Ojai 등)
2026년 CES 국면에서 웨이모의 차세대 로보택시로 보도된 ‘Ojai’는 특정 제조사와의 협업을 통해 제작되는
목적형 전기 밴 형태로 소개되었다. 보도에 따르면 차량은 해외에서 조립된 뒤 미국에서 웨이모의 6세대 자율주행 하드웨어가 통합되는 방식이 언급되며, 웨이모는 기존 운영 도시 외에 다수 도시로 확장을 시사한 바 있다.
5. 법률·사고·논란: 규제 체계, 리콜, 사회적 쟁점
5.1 규제 구조: 캘리포니아 DMV·CPUC의 이원 체계
캘리포니아에서는 자율주행차의 시험·배치(테스트/디플로이먼트) 허가를 주로 DMV가 다루고, 유상 여객 운송과 관련한 프로그램·보고 의무 등은 CPUC 프로그램 구조 안에서 운영되는 것으로 안내된다.
실제로 웨이모의 운행 가능 구역 확대는 DMV 문서에서 허가·갱신 형태로 공지되며, CPUC는 승객 안전 계획 및 정기 보고와 같은 틀을 제시한다.
5.2 리콜과 소프트웨어 업데이트
자율주행 시스템은 소프트웨어가 안전 성능에 직접적인 영향을 미치기 때문에, 결함 가능성이 확인되면 대규모 소프트웨어 업데이트 또는 리콜 형태로 시정되는 사례가 발생한다.
웨이모는 2024년 2월 “이전 소프트웨어”에 대한 자발적 리콜(업데이트)을 공지했으며, 2025년에는 미국 도로교통안전국(NHTSA) 리콜 문서에서도 소프트웨어 업데이트를 통한 시정 내용이 확인된다.
5.3 사고·운영 장애와 안전성 논쟁
로보택시는 실제 도로 환경의 예외 상황(공사 구간 변화, 신호 장애, 돌발 객체 등)에서 운영 안정성이 시험대에 오른다.
2025년 말 샌프란시스코의 대규모 정전 상황에서 웨이모 차량이 교차로 등에서 운행 장애를 일으켜 교통 및 긴급차량 통행에 영향을 주었다는 보도가 있었고, 2026년 1월에는 규제 강화를 요구하는 운전기사 단체의 시위가 보도되며 사회적 갈등이 부각되었다.
또한 피닉스에서 차량이 경전철 선로 위에 정차해 승객이 대피하는 영상이 보도되는 등, 개별 사건이 기술 신뢰도 논쟁으로 연결되는 양상이 나타난다.
5.4 법률 분쟁: 영업비밀(트레이드 시크릿) 소송의 의미
웨이모는 자율주행 라이다 등 핵심 기술을 둘러싼 영업비밀 분쟁의 대표 사례로 자주 언급되는 웨이모-우버 소송을 겪었으며, 2018년 합의로 종료되었다.
이 사건은 자율주행 산업에서 인력 이동, 부품 설계, 소프트웨어 자산이 기업 경쟁력의 핵심이라는 점을 사회적으로 각인시킨 사례로 평가된다.
출처
Waymo 공식 웹사이트(서비스 운영 도시 안내): https://waymo.com/
Waymo 고객지원(서비스 에어리어): https://support.google.com/waymo/answer/9059119?hl=en
Waymo 블로그(6세대 Waymo Driver 소개, 2024-08-19): https://waymo.com/blog/2024/08/meet-the-6th-generation-waymo-driver
Waymo 블로그(자발적 리콜 공지, 2024-02-13): https://waymo.com/blog/2024/02/voluntary-recall-of-our-previous-software
NHTSA 리콜 문서(Part 573 Safety Recall Report 25E-034, PDF): https://static.nhtsa.gov/odi/rcl/2025/RCLRPT-25E034-2471.PDF
California DMV(자율주행 프로그램 안내): https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/
California DMV(웨이모 허가 구역/확장 공지): https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-testing-permit-holders/waymo-approved-areas-of-operation-for-driverless-testing-and-deployment/
California Public Utilities Commission(CPUC, AV 승객 서비스 프로그램): https://www.cpuc.ca.gov/regulatory-services/licensing/transportation-licensing-and-analysis-branch/autonomous-vehicle-programs
California Public Utilities Commission(CPUC, 분기 보고 안내): https://www.cpuc.ca.gov/regulatory-services/licensing/transportation-licensing-and-analysis-branch/autonomous-vehicle-programs/quarterly-reporting
AP News(샌프란시스코 시위 및 규제 논의 보도, 2026-01-09): https://apnews.com/article/ae899573f4b12aa1844656fa5f7365ec
San Francisco Chronicle(정전 시 웨이모 운영 장애 보도, 2026-01): https://www.sfchronicle.com/sf/article/daniel-lurie-waymo-blackouts-pge-21282099.php
PEOPLE(피닉스 경전철 선로 정차 사건 보도, 2026-01): https://people.com/passenger-forced-to-flee-self-driving-vehicle-after-stops-path-of-an-oncoming-train-11884070
The Guardian(웨이모-우버 합의 보도, 2018-02-09): https://www.theguardian.com/us-news/2018/feb/09/uber-waymo-reach-settlement-trade-secrets-trial
Uber Newsroom(웨이모-우버 합의 공지, 2018-02-09): https://www.uber.com/en-NO/newsroom/uber-waymo-settlement/
arXiv / CVPR 2020(웨이모 오픈 데이터셋 논문 PDF): https://openaccess.thecvf.com/content_CVPR_2020/papers/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.pdf
Car and Driver(차세대 로보택시 Ojai 보도, 2026-01): https://www.caranddriver.com/news/a69938250/waymo-ojai-autonomous-robotaxi-details/
World Model)’을 발표하며 자율주행
자율주행
목차
1. 자율주행의 개념 및 분류
2. 자율주행 기술의 역사와 발전 과정
3. 자율주행의 핵심 기술 및 원리
4. 주요 활용 사례 및 응용 분야
5. 현재 동향 및 상용화 수준
6. 자율주행 기술의 미래 전망 및 기대 효과
1. 자율주행의 개념 및 분류
자율주행은 차량이 운전자의 조작 없이 주변 환경을 인지하고, 주행 상황을 판단하며, 스스로 차량을 제어하여 목적지까지 이동하는 기술을 의미한다. 이는 단순한 운전자 보조 시스템을 넘어, 차량 자체의 지능적인 판단과 행동을 통해 안전하고 효율적인 이동을 구현하는 것을 목표로 한다. 자율주행 기술은 그 발전 수준에 따라 국제적으로 표준화된 분류 체계를 따르는데, 이는 미국 자동차 공학회(SAE, Society of Automotive Engineers)에서 정의한 6단계(레벨 0~5) 분류가 가장 널리 사용된다.
1.1. SAE 자율주행 레벨 분류
SAE 분류는 주행 중 운전자의 개입 정도와 시스템이 담당하는 주행 기능의 범위를 기준으로 자율주행 단계를 나눈다. 각 레벨은 다음과 같다.
레벨 0 (자동화 없음, No Automation): 운전자가 모든 주행 기능을 직접 제어하는 단계이다. 차량은 어떠한 자율주행 기능도 제공하지 않는다.
레벨 1 (운전자 보조, Driver Assistance): 특정 주행 모드에서 시스템이 운전자를 보조하는 단계이다. 예를 들어, 어댑티브 크루즈 컨트롤(ACC)이나 차선 유지 보조(LKA) 기능이 이에 해당한다. 운전자는 여전히 주변 환경을 주시하고, 언제든 차량 제어권을 넘겨받을 준비를 해야 한다.
레벨 2 (부분 자동화, Partial Automation): 시스템이 조향과 가감속 등 두 가지 이상의 주행 기능을 동시에 수행하는 단계이다. 테슬라의 오토파일럿이나 현대차의 고속도로 주행 보조(HDA) 등이 대표적이다. 하지만 운전자는 여전히 주행 환경을 모니터링하고, 시스템이 요청하거나 비상 상황 발생 시 즉시 개입해야 한다.
레벨 3 (조건부 자동화, Conditional Automation): 특정 조건 하에서 시스템이 모든 주행 기능을 수행하고 주변 환경을 모니터링하는 단계이다. 운전자는 시스템이 안전하게 작동할 수 있는 특정 조건(예: 고속도로 주행) 내에서는 운전에서 자유로울 수 있다. 그러나 시스템이 주행 불가능 상황을 감지하고 운전자에게 개입을 요청하면, 운전자는 제한된 시간 내에 제어권을 넘겨받아야 한다. 혼다의 레전드와 메르세데스-벤츠의 드라이브 파일럿이 레벨 3 시스템을 상용화한 사례이다.
레벨 4 (고도 자동화, High Automation): 특정 운행 설계 영역(ODD, Operational Design Domain) 내에서 시스템이 모든 주행 기능을 수행하며, 운전자의 개입 없이 비상 상황에도 스스로 대처할 수 있는 단계이다. 운전자는 ODD 내에서는 운전석에 앉아있을 필요조차 없으며, 시스템이 운행 불가능 상황을 감지하더라도 안전하게 차량을 정지시킬 수 있다. 로보택시 서비스 등이 레벨 4를 목표로 개발되고 있다.
레벨 5 (완전 자동화, Full Automation): 모든 도로 조건과 환경에서 시스템이 모든 주행 기능을 수행하는 단계이다. 운전자의 개입이 전혀 필요 없으며, 사실상 운전대나 페달이 없는 차량도 가능해진다. 이는 인간 운전자가 할 수 있는 모든 주행을 시스템이 완벽하게 대체하는 궁극적인 자율주행 단계이다.
2. 자율주행 기술의 역사와 발전 과정
자율주행 기술의 역사는 20세기 중반으로 거슬러 올라간다. 초기에는 주로 군사적 목적이나 자동화된 운송 시스템 연구의 일환으로 시작되었다.
2.1. 초기 연구 및 개념 정립 (1950년대 ~ 1980년대)
1950년대에는 제너럴 모터스(GM)가 '미래의 고속도로(Future Highway)'라는 개념을 제시하며, 도로에 매설된 전선을 통해 차량을 제어하는 아이디어를 선보였다. 이는 오늘날 자율주행의 초기 구상으로 볼 수 있다. 1980년대에는 카네기 멜론 대학교의 ALVINN(Autonomous Land Vehicle In a Neural Network) 프로젝트가 신경망을 이용해 도로를 인식하고 주행하는 연구를 진행하며 인공지능의 가능성을 보여주었다.
2.2. DARPA 챌린지 및 센서 기술 발전 (2000년대)
자율주행 기술 발전에 결정적인 전환점이 된 것은 미국 국방부 산하 방위고등연구계획국(DARPA)이 주최한 'DARPA 그랜드 챌린지'와 '어반 챌린지'이다. 2004년부터 시작된 이 대회들은 무인 차량이 사막이나 도시 환경에서 정해진 코스를 완주하는 것을 목표로 했으며, 라이다(LiDAR), 레이더(Radar), 카메라 등 다양한 센서 기술과 인공지능 기반의 환경 인식 및 경로 계획 기술 발전을 촉진했다. 스탠퍼드 대학교의 '스탠리(Stanley)'와 카네기 멜론 대학교의 '보스(Boss)' 등이 이 대회를 통해 자율주행 기술의 실현 가능성을 입증했다.
2.3. 인공지능 및 빅데이터 도입 (2010년대)
2010년대에 들어서면서 딥러닝을 비롯한 인공지능 기술의 비약적인 발전과 컴퓨팅 파워의 증가는 자율주행 기술 발전에 가속도를 붙였다. 구글(현 웨이모)은 2009년부터 자율주행차 프로젝트를 시작하며 실제 도로 주행 데이터를 대규모로 수집하고, 이를 기반으로 인공지능 알고리즘을 고도화했다. 테슬라는 카메라 기반의 비전 시스템과 인공지능을 활용한 자율주행 기술을 개발하며 상용차에 적용하기 시작했다. 이 시기에는 고정밀 지도 기술과 V2X(Vehicle-to-everything) 통신 기술의 중요성도 부각되었다.
2.4. 상용화 경쟁 심화 (2020년대 이후)
현재는 레벨 2, 3 수준의 자율주행 기능이 상용차에 폭넓게 적용되고 있으며, 레벨 4 수준의 로보택시 서비스가 일부 지역에서 시범 운영되거나 상용화 초기 단계에 진입했다. 웨이모, 크루즈(Cruise), 바이두(Baidu) 등은 특정 지역에서 운전자 없는 로보택시 서비스를 제공하며 기술의 안정성과 신뢰성을 입증하고 있다. 완성차 제조사들은 물론, 엔비디아(NVIDIA), 인텔(Intel) 모빌아이(Mobileye)와 같은 반도체 및 소프트웨어 기업들도 자율주행 시장의 주도권을 잡기 위해 치열하게 경쟁하고 있다.
3. 자율주행의 핵심 기술 및 원리
자율주행 시스템은 크게 주변 환경을 인지하는 센서, 수집된 데이터를 분석하고 판단하는 인공지능, 정확한 위치를 파악하는 고정밀 지도 및 측위 기술, 그리고 차량을 제어하는 제어 시스템으로 구성된다. 이 네 가지 핵심 기술이 유기적으로 결합하여 자율주행을 가능하게 한다.
3.1. 환경 인지 센서 기술
자율주행차는 사람의 눈과 같은 역할을 하는 다양한 센서를 통해 주변 환경을 인식한다.
카메라 (Camera): 차량 주변의 시각 정보를 수집하여 차선, 신호등, 표지판, 보행자, 다른 차량 등을 식별한다. 색상 정보를 얻을 수 있고 비용이 저렴하며 해상도가 높다는 장점이 있지만, 빛의 변화(역광, 터널), 날씨(안개, 비, 눈)에 취약하다는 단점이 있다.
레이더 (Radar): 전파를 발사하여 물체에 반사되어 돌아오는 시간을 측정해 물체와의 거리, 속도, 방향을 감지한다. 날씨 변화에 강하고 장거리 감지에 유리하며, 특히 전방 충돌 방지 시스템(FCW)이나 어댑티브 크루즈 컨트롤(ACC)에 필수적으로 사용된다. 하지만 물체의 형상을 정확히 파악하기 어렵다는 한계가 있다.
라이다 (LiDAR): 레이저 펄스를 발사하여 반사되는 시간을 측정해 주변 환경의 3D 지도를 생성한다. 매우 정밀한 거리 및 형태 정보를 제공하며, 야간에도 뛰어난 성능을 발휘한다. 자율주행차의 '눈' 또는 '뇌'의 핵심 센서로 불리지만, 높은 비용과 날씨에 따른 성능 저하 가능성이 단점으로 지적된다.
초음파 센서 (Ultrasonic Sensor): 주로 근거리 물체 감지에 사용되며, 주차 보조 시스템이나 저속 주행 시 장애물 감지에 활용된다.
3.2. 인공지능 및 머신러닝
다양한 센서에서 수집된 방대한 데이터는 인공지능(AI)과 머신러닝(ML) 알고리즘을 통해 분석되고 해석된다. 이는 자율주행차의 '뇌' 역할을 한다.
데이터 융합 (Sensor Fusion): 각 센서의 장단점을 보완하기 위해 여러 센서에서 얻은 데이터를 통합하여 보다 정확하고 신뢰성 있는 환경 모델을 구축한다. 예를 들어, 카메라의 시각 정보와 라이다의 3D 거리 정보를 결합하여 물체의 종류와 위치를 더욱 정확하게 파악한다.
객체 인식 및 분류 (Object Detection & Classification): 딥러닝 기반의 컴퓨터 비전 기술을 활용하여 이미지 및 3D 포인트 클라우드 데이터에서 차량, 보행자, 자전거, 차선, 신호등 등을 실시간으로 감지하고 분류한다.
경로 계획 및 의사 결정 (Path Planning & Decision Making): 인식된 환경 정보와 고정밀 지도를 바탕으로 안전하고 효율적인 주행 경로를 계획한다. 이는 예측 알고리즘을 통해 다른 차량이나 보행자의 움직임을 예측하고, 이에 따라 차선 변경, 속도 조절, 정지 등의 의사결정을 내리는 과정을 포함한다. 강화 학습(Reinforcement Learning)과 같은 고급 AI 기술이 활용되기도 한다.
3.3. 고정밀 지도 및 측위 기술
자율주행차는 정확한 위치 파악과 주변 환경에 대한 상세한 정보를 위해 고정밀 지도(HD Map)와 정밀 측위 기술을 필요로 한다.
고정밀 지도 (HD Map): 일반 내비게이션 지도보다 훨씬 정밀한 정보를 제공한다. 차선 정보, 도로 경계, 신호등 위치, 표지판, 노면 표시, 심지어 가로수나 건물과 같은 주변 지형지물까지 센티미터 단위의 정확도로 포함한다. 이는 센서의 한계를 보완하고, 차량이 현재 위치를 정확히 파악하며, 미리 경로를 계획하는 데 필수적이다.
정밀 측위 (Precise Positioning): GPS(GNSS) 신호와 함께 IMU(관성 측정 장치), 휠 속도 센서, 카메라, 라이다 등 다양한 센서 데이터를 융합하여 차량의 정확한 위치를 실시간으로 파악한다. 특히 RTK(Real-Time Kinematic) GPS나 PPP(Precise Point Positioning)와 같은 기술은 GPS 오차를 보정하여 수 센티미터 수준의 정밀한 위치 정보를 제공한다.
3.4. 제어 시스템 (Drive-by-Wire)
자율주행 시스템의 판단과 계획에 따라 차량을 실제로 움직이는 것이 제어 시스템이다. 이는 'Drive-by-Wire' 기술을 기반으로 한다.
전자식 제어 (Electronic Control): 기존의 기계식 연결(스티어링 휠과 바퀴, 브레이크 페달과 브레이크 등)을 전기 신호로 대체하는 기술이다. 스티어 바이 와이어(Steer-by-Wire), 브레이크 바이 와이어(Brake-by-Wire), 스로틀 바이 와이어(Throttle-by-Wire) 등이 이에 해당한다. 이를 통해 자율주행 시스템이 차량의 조향, 가속, 제동을 정밀하게 제어할 수 있게 된다.
차량 동역학 제어 (Vehicle Dynamics Control): 차량의 안정성과 승차감을 유지하면서 경로를 정확하게 추종하도록 제어한다. 이는 속도 제어, 차선 유지 제어, 장애물 회피 제어 등 다양한 하위 제어 알고리즘을 포함한다.
4. 주요 활용 사례 및 응용 분야
자율주행 기술은 단순히 개인 승용차를 넘어 다양한 운송 및 물류 분야에서 혁신적인 변화를 가져오고 있다.
4.1. 승용차 및 대중교통
개인 승용차: 현재 레벨 2 수준의 자율주행 기능(고속도로 주행 보조, 차선 변경 보조 등)이 고급차종을 중심으로 보편화되고 있으며, 테슬라와 같은 일부 제조사는 레벨 3에 준하는 기능을 제공하며 운전자의 편의성을 높이고 있다. 미래에는 완전 자율주행 승용차가 보편화되어 운전자가 운전에서 완전히 해방되는 시대를 열 것으로 기대된다.
로보택시 (Robotaxi): 레벨 4 수준의 자율주행 기술을 기반으로 운전자 없이 승객을 운송하는 서비스이다. 웨이모(Waymo), 크루즈(Cruise), 바이두(Baidu) 등은 미국 피닉스, 샌프란시스코, 중국 베이징 등 일부 도시에서 로보택시 서비스를 상용화하거나 시범 운영하고 있다. 이는 대중교통의 효율성을 높이고, 이동 약자의 접근성을 개선하며, 교통 체증 및 주차 문제 해결에 기여할 것으로 보인다.
자율주행 셔틀: 특정 구간을 정기적으로 운행하는 자율주행 셔틀버스도 상용화되고 있다. 공항, 대학 캠퍼스, 산업 단지, 신도시 등에서 고정된 노선을 운행하며 대중교통의 보조적인 역할을 수행한다. 국내에서도 세종시, 순천만국가정원 등에서 자율주행 셔틀이 운영된 바 있다.
4.2. 물류 및 배송
자율주행 트럭: 장거리 운송에 특화된 자율주행 트럭은 물류 비용 절감, 운전자 피로도 감소, 운행 시간 증대 등의 이점을 제공한다. 투심플(TuSimple), 오로라(Aurora) 등은 고속도로를 중심으로 자율주행 트럭 운송 서비스를 개발 및 시범 운영하고 있다.
배송 로봇: 라스트마일(Last-mile) 배송에 활용되는 자율주행 배송 로봇은 도심이나 아파트 단지 내에서 소규모 물품을 배송한다. 이는 인력난 해소와 배송 효율성 증대에 기여하며, 국내에서도 우아한형제들의 '딜리'와 같은 배송 로봇이 시범 운영되고 있다.
4.3. 기타 운송수단
철도: 지하철, 경전철 등 도시 철도 시스템에서는 이미 높은 수준의 무인 운전 시스템이 적용되고 있다. 이는 정시성 확보와 운영 효율성 증대에 크게 기여한다.
항공기: 항공기는 이륙 및 착륙 시 조종사의 개입이 필요하지만, 순항 비행 중에는 오토파일럿 시스템을 통해 상당 부분 자율 비행이 이루어진다. 미래에는 완전 자율 비행 항공기 및 드론 택시(UAM) 개발이 활발히 진행될 것으로 예상된다.
선박: 자율운항 선박은 항해 중 충돌 회피, 경로 최적화, 연료 효율 증대 등을 목표로 개발되고 있다. 현대중공업그룹의 아비커스(Avikus)는 대형 선박의 자율운항 솔루션을 개발하며 상용화를 추진 중이다.
5. 현재 동향 및 상용화 수준
현재 자율주행 기술은 빠른 속도로 발전하며 상용화 단계를 밟고 있으나, 완전 자율주행(레벨 5)에 도달하기까지는 여전히 많은 과제가 남아있다.
5.1. 상용화 현황 및 주요 기업 경쟁
현재 시장에서는 레벨 2 수준의 자율주행 기능이 보편화되어 신차 구매 시 쉽게 접할 수 있다. 고속도로 주행 보조(HDA), 차선 유지 보조(LKA), 어댑티브 크루즈 컨트롤(ACC) 등이 대표적이다. 레벨 3 자율주행은 특정 조건(예: 고속도로 정체 구간)에서 운전자의 개입 없이 주행이 가능한 수준으로, 메르세데스-벤츠의 '드라이브 파일럿'과 혼다의 '레전드'가 일본과 독일 등 일부 국가에서 상용화되었다.
레벨 4 자율주행은 특정 운행 설계 영역(ODD) 내에서 운전자 개입 없이 완전 자율주행이 가능한 단계로, 웨이모(Waymo)와 크루즈(Cruise)가 미국 피닉스, 샌프란시스코 등에서 로보택시 서비스를 운영하며 선두를 달리고 있다. 중국에서는 바이두(Baidu)의 아폴로(Apollo)가 우한, 충칭 등에서 로보택시를 운영 중이다.
주요 완성차 제조사들은 물론, 구글 웨이모, GM 크루즈, 바이두, 그리고 엔비디아, 인텔 모빌아이와 같은 기술 기업들이 자율주행 소프트웨어 및 하드웨어 개발에 막대한 투자를 하며 치열한 경쟁을 벌이고 있다. 특히 소프트웨어 정의 차량(SDV)으로의 전환이 가속화되면서, 자율주행 기술은 차량의 핵심 경쟁력으로 부상하고 있다.
5.2. 기술적 도전 과제
자율주행 기술의 완전한 상용화를 위해서는 여전히 해결해야 할 기술적 난제들이 많다.
악천후 및 비정형 환경 대응: 폭우, 폭설, 짙은 안개 등 악천후 상황에서는 센서의 인지 능력이 크게 저하될 수 있다. 또한, 공사 구간, 비포장도로, 예측 불가능한 보행자 행동 등 비정형적인 주행 환경에서의 안정적인 대응 능력 확보가 중요하다.
엣지 케이스 (Edge Cases) 처리: 일반적이지 않고 드물게 발생하는 '엣지 케이스' 상황(예: 도로 위의 특이한 물체, 비정상적인 교통 흐름)에 대한 시스템의 판단 및 대응 능력 강화가 필요하다. 이를 위해 방대한 양의 실제 주행 데이터와 시뮬레이션 데이터를 활용한 학습이 필수적이다.
사이버 보안: 자율주행차는 외부 네트워크에 연결되어 해킹의 위협에 노출될 수 있다. 차량 제어 시스템에 대한 사이버 공격은 심각한 안전 문제를 야기할 수 있으므로, 강력한 보안 시스템 구축이 필수적이다.
높은 컴퓨팅 파워 및 전력 소모: 복잡한 인공지능 알고리즘과 수많은 센서 데이터를 실시간으로 처리하기 위해서는 고성능 컴퓨팅 하드웨어가 필요하며, 이는 차량의 전력 소모를 증가시키는 요인이 된다.
5.3. 법적 및 윤리적 도전 과제
기술 발전과 더불어 법적, 윤리적 문제 또한 자율주행 상용화의 중요한 걸림돌로 작용하고 있다.
사고 책임 소재: 자율주행차 사고 발생 시 책임 소재를 누구에게 물을 것인가(운전자, 제조사, 소프트웨어 개발사 등)에 대한 명확한 법적 기준이 아직 정립되지 않았다. 이는 기술 개발 및 보험 제도에 큰 영향을 미친다.
규제 및 표준화: 각국 정부는 자율주행차의 안전성 확보를 위한 규제 프레임워크를 마련하고 있으며, 국제적인 표준화 노력도 진행 중이다. 하지만 기술 발전 속도에 맞춰 법규를 정비하는 것이 쉽지 않다.
윤리적 딜레마 (Trolley Problem): 피할 수 없는 사고 상황에서 자율주행차가 누구의 생명을 우선시해야 하는가와 같은 윤리적 딜레마는 사회적 합의가 필요한 부분이다. 예를 들어, 보행자와 탑승자 중 누구를 보호할 것인가와 같은 문제는 시스템 설계에 있어 중요한 고려 사항이다.
데이터 프라이버시: 자율주행차는 운전자의 이동 경로, 습관 등 민감한 개인 정보를 수집할 수 있다. 이러한 데이터의 수집, 저장, 활용에 대한 투명성과 보안성 확보가 중요하다.
6. 자율주행 기술의 미래 전망 및 기대 효과
자율주행 기술은 미래 사회의 모습을 근본적으로 변화시킬 잠재력을 가지고 있으며, 다양한 분야에서 혁신적인 기대 효과를 가져올 것으로 전망된다.
6.1. 미래 사회 변화 예측
교통 시스템의 혁신: 완전 자율주행 시대가 도래하면 교통 체증이 크게 감소하고, 교통 흐름이 최적화될 것이다. 차량 간 통신(V2V)과 인프라 통신(V2I)을 통해 도로 위의 모든 차량이 유기적으로 연결되어 효율적인 운행이 가능해진다. 또한, 주차 공간 활용의 효율성이 증대되고, 개인 차량 소유의 필요성이 줄어들며 공유 모빌리티 서비스가 더욱 활성화될 수 있다.
도시 계획 및 인프라 변화: 자율주행차에 최적화된 스마트 도시 인프라가 구축될 것이다. 이는 도로 설계, 신호 체계, 주차 공간 등 도시 전반의 변화를 유도하며, 대중교통 시스템과의 연계를 통해 도시 이동성을 극대화할 수 있다.
경제 및 고용 시장 영향: 물류 및 운송 산업의 효율성이 극대화되어 비용 절감 효과가 발생할 것이다. 새로운 모빌리티 서비스 시장이 창출되고 관련 산업이 성장할 것으로 예상된다. 반면, 전문 운전자 직업(택시, 트럭, 버스 기사 등)의 감소 가능성도 제기되어, 이에 대한 사회적 대비가 필요하다.
개인의 삶의 질 향상: 운전으로부터 자유로워진 시간은 개인의 생산성 향상이나 여가 활동에 활용될 수 있다. 이동 약자(노약자, 장애인)의 이동권이 크게 확대되며, 교통사고 감소로 인한 사회적 비용 절감 및 생명 보호 효과도 기대된다.
6.2. 완전 자율주행 시대의 도래 시점 및 과제
전문가들은 레벨 5 완전 자율주행의 상용화 시점에 대해 다양한 예측을 내놓고 있다. 일부는 2030년대 중반 이후로 예상하며, 기술적 난제와 사회적 합의가 필요함을 강조한다. 특히, 모든 기상 조건과 모든 도로 환경에서 인간 운전자를 능가하는 안전성을 확보하는 것이 가장 큰 과제이다.
또한, 앞서 언급된 기술적, 법적, 윤리적 과제들을 해결하기 위한 지속적인 연구 개발과 국제적인 협력, 그리고 사회적 논의가 필수적이다. 특히, 자율주행 시스템의 투명성과 신뢰성을 확보하고, 사고 발생 시 책임 소재를 명확히 하며, 윤리적 기준을 수립하는 것이 중요하다.
6.3. 윤리적 논의의 중요성
자율주행 기술은 단순한 공학적 문제를 넘어 사회 전체의 가치관과 윤리적 판단에 영향을 미친다. '트롤리 딜레마'와 같은 극단적인 상황뿐만 아니라, 시스템의 편향성, 데이터 프라이버시, 인간과 기계의 상호작용 방식 등 다양한 윤리적 질문에 대한 답을 찾아야 한다. 기술 개발 단계부터 사회 각계각층의 참여를 통해 윤리적 가이드라인을 수립하고, 기술이 인간의 존엄성과 안전을 최우선으로 하도록 설계하는 노력이 지속되어야 할 것이다.
자율주행 기술은 인류에게 전례 없는 이동의 자유와 편의를 제공할 잠재력을 가지고 있다. 기술의 발전과 함께 사회적 합의와 제도적 정비가 조화를 이룰 때, 우리는 비로소 안전하고 지속 가능한 자율주행 시대를 맞이할 수 있을 것이다.
참고 문헌
SAE International. (2021). J3016_202104: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.
National Highway Traffic Safety Administration (NHTSA). (2022). Automated Vehicles for Safety. Retrieved from https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
Mercedes-Benz. (2023). DRIVE PILOT. Retrieved from https://www.mercedes-benz.com/en/innovation/drive-pilot/
Carnegie Mellon University. (n.d.). ALVINN. Retrieved from https://www.cs.cmu.edu/~tjochem/alvinn/alvinn.html
DARPA. (n.d.). Grand Challenge. Retrieved from https://www.darpa.mil/about-us/timeline/grand-challenge
Waymo. (n.d.). Our history. Retrieved from https://waymo.com/journey/
Cruise. (2023). Cruise Origin. Retrieved from https://www.getcruise.com/origin/
Mobileye. (2023). Mobileye SuperVision™ and Mobileye Chauffeur™. Retrieved from https://www.mobileye.com/our-technology/mobileye-supervision-and-mobileye-chauffeur/
Kim, J. H., & Kim, J. H. (2022). A Review of Sensor Fusion Techniques for Autonomous Driving. Journal of Advanced Transportation, 2022.
Chen, X., et al. (2023). Deep Learning for Autonomous Driving: A Survey. IEEE Transactions on Intelligent Transportation Systems, 24(1), 1-20.
Jo, K., et al. (2022). High-Definition Map Generation and Localization for Autonomous Driving: A Survey. Sensors, 22(1), 321.
Guldner, S., et al. (2021). Drive-by-Wire Systems for Autonomous Vehicles: A Review. SAE Technical Paper, 2021-01-0863.
Tesla. (n.d.). Autopilot and Full Self-Driving Capability. Retrieved from https://www.tesla.com/autopilot
Baidu Apollo. (n.d.). Robotaxi. Retrieved from https://apollo.baidu.com/robotaxi
국토교통부. (2023). 자율주행 셔틀 서비스 확대.
TuSimple. (n.d.). Autonomous Freight Network. Retrieved from https://www.tusimple.com/technology/autonomous-freight-network
우아한형제들. (n.d.). 배달의민족 자율주행 로봇 '딜리'. Retrieved from https://www.woowahan.com/tech/robot-delivery
Siemens Mobility. (n.d.). Automated Train Operation. Retrieved from https://www.siemens.com/global/en/products/mobility/rail-solutions/automation/automated-train-operation.html
Airbus. (n.d.). Urban Air Mobility. Retrieved from https://www.airbus.com/en/innovation/future-mobility/urban-air-mobility
Avikus. (n.d.). Autonomous Navigation. Retrieved from https://www.avikus.ai/technology/autonomous-navigation
Honda. (2021). Honda SENSING Elite. Retrieved from https://global.honda/newsroom/news/2021/4210304eng.html
Deloitte. (2023). The future of mobility: Autonomous vehicles. Retrieved from https://www2.deloitte.com/us/en/pages/manufacturing/articles/future-of-mobility-autonomous-vehicles.html
Badue, C., et al. (2021). Self-Driving Cars: A Survey. Expert Systems with Applications, 165, 113812.
European Union Agency for Cybersecurity (ENISA). (2022). Cybersecurity of Autonomous Vehicles. Retrieved from https://www.enisa.europa.eu/publications/cybersecurity-of-autonomous-vehicles
Fagnant, D. J., & Kockelman, K. (2021). Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations. Transportation Research Part A: Policy and Practice, 144, 1-14.
Bonnefon, J. F., et al. (2016). The social dilemma of autonomous vehicles. Science, 352(6293), 1573-1576.
McKinsey & Company. (2023). Autonomous driving: The path to adoption. Retrieved from https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-driving-the-path-to-adoption
KPMG. (2022). Autonomous Vehicles Readiness Index. Retrieved from https://kpmg.com/xx/en/home/insights/2022/07/autonomous-vehicles-readiness-index.html
Gartner. (2023). Hype Cycle for Automotive and Smart Mobility.
기술의 새로운 장을 열었다. 이번 발표는 자율주행차의 안전성과 효율성을 획기적으로 향상시킬 수 있는 중요한 전환점으로 평가받는다.
지니 3는 지난 2025년 하반기 구글 딥마인드가 공개한 AI 모델로, 대규모 영상 데이터를 학습해 물리적 세계에 대한 이해력을 갖췄다. 기존의 자율주행 시뮬레이션은 실제 운행 데이터를 기반으로 하기 때문에 데이터가 부족하거나 위험한 상황을 충분히 테스트하기 어렵다는 한계가 있었다. 그러나 지니 3의 도입은 이러한 한계를 극복하고, 더욱 현실적이고 복잡한 주행 시나리오를 생성하는 길을 열어주었다.
웨이모 월드 모델은 지니 3가 사전 학습한 영상 기반의 세계 지식을 3D 라이다
라이다
1. 개념과 측정 원리: 레이저 펄스와 3차원 좌표
라이다(LiDAR)는 레이저(빛) 펄스를 목표물에 방출한 뒤 반사되어 되돌아오는 시간을 측정하여 거리를 계산하고, 이를 다수 방향으로 반복해 3차원 형상을 재구성하는 센싱 기술이다. 기본 원리는 빛의 왕복 시간(Time-of-Flight)을 거리로 환산하는 방식이며, 실제 시스템에서는 거리 정보에 더해 센서의 자세·위치를 결합해 측정점의 공간 좌표(X, Y, Z)를 산출한다. 이때 수집되는 3차원 데이터는 일반적으로 점군(Point Cloud) 형태로 표현되며, 지형·구조물·차량 주변 환경을 정밀하게 모델링하는 데 쓰인다.
라이다는 원격탐사 분야(지형·산림·도시 모델링)뿐 아니라 로봇, 물류 자동화, 산업용 3D 스캐닝, 그리고 자율주행용 환경 인지 센서로 널리 연구·적용되고 있다.
2. 레이더(RADAR)와의 차이: 장점과 한계
2.1 라이다가 레이더에 비해 나은 점
라이다는 레이더보다 파장이 훨씬 짧은 빛(레이저)을 사용하므로, 동일 조건에서 더 높은 각 분해능과 공간 해상도를 얻기 유리하다. 그 결과 물체의 윤곽, 모서리, 작은 구조를 상대적으로 정밀하게 포착해 3차원 형상 기반의 분류 및 정밀 지도화에 강점을 가진다. 자율주행 관점에서는 차선 경계, 연석, 구조물의 형태 정보를 점군으로 직접 확보할 수 있어 고정밀 환경 표현에 활용된다.
2.2 라이다가 레이더에 비해 부족한 점
라이다는 광학 신호 특성상 안개·비·눈과 같은 악천후에서 산란과 감쇠의 영향을 더 크게 받는 경향이 있으며, 결과적으로 탐지거리와 신뢰도가 저하될 수 있다. 반면 레이더는 마이크로파 대역을 사용해 기상 조건에 상대적으로 강하고, 장거리 탐지에도 유리한 경우가 많다. 또한 레이더는 도플러 효과를 이용해 상대속도(접근·이탈 속도) 정보를 직접적으로 얻는 데 강점이 있어, 주행 안전을 위한 속도 기반 판단에 유리하다. 라이다는 속도 추정을 수행할 수 있으나, 일반적인 펄스 방식에서는 레이더만큼 직접적·견고한 속도 측정이 어렵거나 구현 복잡도가 증가할 수 있다.
3. 자율주행 시스템에서: 인지, 지도화·자기위치추정, 센서 융합
자율주행에서 라이다는 주변 환경을 3차원으로 계측해 장애물 인지, 주행 가능 영역 추정, 정밀 지도 구축 및 자기 위치 추정에 활용된다. 특히 3차원 점군은 물체의 거리와 형상을 직접 제공하므로, 카메라 기반 추정에서 발생할 수 있는 스케일(절대거리) 불확실성을 줄이는 데 도움이 된다. 고정밀 지도(HD Map) 또는 3차원 점군 지도를 기반으로 한 정합(registration) 방법은 도심 환경에서의 정밀 로컬라이제이션(Localization) 연구에서 중요한 축으로 다뤄진다.
실차 시스템에서는 라이다 단독이 아니라 카메라(색·텍스처), 레이더(속도·기상 내성), GNSS/IMU(절대 위치·자세)와의 센서 융합이 일반적이다. 라이다는 형태 기반 정보에 강하지만 기상·오염에 취약할 수 있으므로, 상호 보완적 센서 구성이 안전성과 가용성을 높이는 방향으로 발전해 왔다.
4. 방식: 주사식 스캐너와 섬광(플래시) 스캐너
4.1 주사식(스캐닝) 라이다
주사식 라이다는 레이저 빔을 시간에 따라 여러 방향으로 ‘스캔’하여 공간을 훑고 점군을 구성한다. 구현 방식에 따라 회전 부품을 사용하는 기계식(예: 회전 미러/회전 헤드), 미세거울을 이용하는 MEMS 기반, 또는 다른 빔 조향 구조로 분류된다. 기계식 방식은 넓은 시야각(예: 360도)에 유리하고 성숙한 구현이 가능하지만, 회전·구동부가 존재하므로 내구성·진동·방진/방수 설계와 비용 측면에서 부담이 될 수 있다. 반면 MEMS 등 준(準) 솔리드스테이트 접근은 소형화와 부품 수 감소를 통해 신뢰성·원가 개선을 목표로 한다.
4.2 섬광(플래시) 라이다
섬광(플래시) 라이다는 특정 시야각 전체를 한 번에 조명하듯 레이저를 확산 또는 어레이 형태로 방출하고, 수신부(예: 배열형 센서)에서 동시에 반사 신호를 받아 깊이(거리) 영상을 구성하는 방식으로 설명된다. 이 접근은 빔 조향을 위한 기계적 스캐닝이 필요 없거나 줄어들 수 있어 구조 단순화와 잠재적 신뢰성 향상에 유리하다. 다만 동일한 조건에서 장거리 성능, 눈 안전(eye safety) 제약 하에서의 출력 설계, 강한 태양광 등 주변광(ambient light) 조건 대응, 수신 신호 처리 등에서 구현 난도가 높아질 수 있다. 따라서 응용 요구(거리, 시야각, 해상도, 원가)에 따라 주사식과 섬광 방식이 선택되거나, 중간 형태의 하이브리드/솔리드스테이트 계열로 다양화되는 추세가 관찰된다.
5. 제약과 발전 방향: 기상 대응, 비용, 솔리드스테이트
라이다의 대표적 제약은 악천후 및 공기 중 입자(안개·비·눈·먼지)에 따른 광 산란, 그리고 센서 표면 오염(흙, 물방울)로 인한 성능 저하다. 자율주행에서는 이러한 상황에서의 가용성이 중요하므로, 레이더·카메라와의 융합, 센서 세정·열선·코팅 등 하드웨어 대책, 그리고 신호처리·추적 알고리즘의 강인화가 함께 논의된다.
산업적 관점에서는 원가 절감과 차량 탑재 적합성(소형화, 내구성, 저전력)이 핵심 과제이며, 이를 위해 회전 부품 의존도를 낮춘 솔리드스테이트(또는 준 솔리드스테이트) 라이다 개발이 활발하다. 또한 파장 선택(예: 근적외선 대역)과 안전 규격을 만족하면서도 충분한 거리·해상도를 확보하려는 설계 최적화가 지속적으로 연구되고 있다.
출처
NEON Science, “The Basics of LiDAR - Light Detection and Ranging” (Sep 13, 2024): https://www.neonscience.org/resources/learning-hub/tutorials/lidar-basics
Texas Instruments, “An Introduction to Automotive LIDAR” (PDF): https://www.ti.com/lit/slyy150
NIH PubMed Central, “MEMS Mirrors for LiDAR: A Review” (2020): https://pmc.ncbi.nlm.nih.gov/articles/PMC7281653/
ScienceDirect Topics, “Light Detection and Ranging - an overview”: https://www.sciencedirect.com/topics/engineering/light-detection-and-ranging
IBM, “What is LiDAR?”: https://www.ibm.com/think/topics/lidar
MDPI, “LiDAR-Based Sensor Fusion SLAM and Localization …” (2023): https://www.mdpi.com/2313-433X/9/2/52
Wevolver, “Lidar vs radar” (Apr 9, 2024): https://www.wevolver.com/article/lidar-vs-radar
Wikipedia, “Lidar”: https://en.wikipedia.org/wiki/Lidar
(LiDAR, 레이저로 사물과의 거리를 감지하는 센서) 출력으로 변환하는 후처리 과정을 거쳐 개발됐다. 이 모델은 세 가지 핵심 제어 수단을 제공한다. 첫째, ‘운전 행동 제어’를 통해 다양한 가정(what-if) 시나리오를 시뮬레이션한다. 둘째, ‘장면 레이아웃 제어’는 도로 구조와 신호, 주변 차량 및 보행자의 배치를 자유자재로 조정할 수 있게 한다. 셋째, ‘언어 제어’는 텍스트 명령어만으로 날씨, 시간대, 환경 등을 손쉽게 변형할 수 있다.
특히 지니 3는 방대한 세계 지식을 활용하여 현실에서 거의 경험할 수 없는 희귀하고 복잡한 상황, 이른바 ‘에지 케이스(Edge Case)’를 시뮬레이션에서 생성해낸다. 자율주행차가 실제 도로에서 거의 마주치기 어려운 코끼리의 등장이나 토네이도 발생, 열대 지방 도로 위의 눈길 같은 상황이 이에 포함된다. 이러한 생성 능력은 웨이모의 안전성 검증 수준과 테스트 효율을 비약적으로 끌어올린다.
웨이모는 이미 공공 도로에서 약 2억 마일을 완전 자율주행으로 주행했으며, 가상 환경에서는 수십억 마일을 시뮬레이션으로 달렸다. 이렇게 축적된 방대한 주행 기록은 웨이모가 지니 3 기반의 시뮬레이션 모델을 통해 자율주행차 테스트 경쟁력을 유지하는 데 있어 대체 불가능한 자산이 된다.
웨이모의 이번 모델 도입은 자율주행차의 안전성 기준을 한 단계 격상시키는 계기가 될 것이다. “자율주행차의 안전성 기준을 한 단계 끌어올리는 계기”라는 웨이모 관계자의 말처럼, 경쟁 자율주행 기업들 역시 유사한 고도 시뮬레이션 역량을 확보해야만 시장에서 생존할 수 있을 것이다. 이는 바야흐로 자율주행
자율주행
목차
1. 자율주행의 개념 및 분류
2. 자율주행 기술의 역사와 발전 과정
3. 자율주행의 핵심 기술 및 원리
4. 주요 활용 사례 및 응용 분야
5. 현재 동향 및 상용화 수준
6. 자율주행 기술의 미래 전망 및 기대 효과
1. 자율주행의 개념 및 분류
자율주행은 차량이 운전자의 조작 없이 주변 환경을 인지하고, 주행 상황을 판단하며, 스스로 차량을 제어하여 목적지까지 이동하는 기술을 의미한다. 이는 단순한 운전자 보조 시스템을 넘어, 차량 자체의 지능적인 판단과 행동을 통해 안전하고 효율적인 이동을 구현하는 것을 목표로 한다. 자율주행 기술은 그 발전 수준에 따라 국제적으로 표준화된 분류 체계를 따르는데, 이는 미국 자동차 공학회(SAE, Society of Automotive Engineers)에서 정의한 6단계(레벨 0~5) 분류가 가장 널리 사용된다.
1.1. SAE 자율주행 레벨 분류
SAE 분류는 주행 중 운전자의 개입 정도와 시스템이 담당하는 주행 기능의 범위를 기준으로 자율주행 단계를 나눈다. 각 레벨은 다음과 같다.
레벨 0 (자동화 없음, No Automation): 운전자가 모든 주행 기능을 직접 제어하는 단계이다. 차량은 어떠한 자율주행 기능도 제공하지 않는다.
레벨 1 (운전자 보조, Driver Assistance): 특정 주행 모드에서 시스템이 운전자를 보조하는 단계이다. 예를 들어, 어댑티브 크루즈 컨트롤(ACC)이나 차선 유지 보조(LKA) 기능이 이에 해당한다. 운전자는 여전히 주변 환경을 주시하고, 언제든 차량 제어권을 넘겨받을 준비를 해야 한다.
레벨 2 (부분 자동화, Partial Automation): 시스템이 조향과 가감속 등 두 가지 이상의 주행 기능을 동시에 수행하는 단계이다. 테슬라의 오토파일럿이나 현대차의 고속도로 주행 보조(HDA) 등이 대표적이다. 하지만 운전자는 여전히 주행 환경을 모니터링하고, 시스템이 요청하거나 비상 상황 발생 시 즉시 개입해야 한다.
레벨 3 (조건부 자동화, Conditional Automation): 특정 조건 하에서 시스템이 모든 주행 기능을 수행하고 주변 환경을 모니터링하는 단계이다. 운전자는 시스템이 안전하게 작동할 수 있는 특정 조건(예: 고속도로 주행) 내에서는 운전에서 자유로울 수 있다. 그러나 시스템이 주행 불가능 상황을 감지하고 운전자에게 개입을 요청하면, 운전자는 제한된 시간 내에 제어권을 넘겨받아야 한다. 혼다의 레전드와 메르세데스-벤츠의 드라이브 파일럿이 레벨 3 시스템을 상용화한 사례이다.
레벨 4 (고도 자동화, High Automation): 특정 운행 설계 영역(ODD, Operational Design Domain) 내에서 시스템이 모든 주행 기능을 수행하며, 운전자의 개입 없이 비상 상황에도 스스로 대처할 수 있는 단계이다. 운전자는 ODD 내에서는 운전석에 앉아있을 필요조차 없으며, 시스템이 운행 불가능 상황을 감지하더라도 안전하게 차량을 정지시킬 수 있다. 로보택시 서비스 등이 레벨 4를 목표로 개발되고 있다.
레벨 5 (완전 자동화, Full Automation): 모든 도로 조건과 환경에서 시스템이 모든 주행 기능을 수행하는 단계이다. 운전자의 개입이 전혀 필요 없으며, 사실상 운전대나 페달이 없는 차량도 가능해진다. 이는 인간 운전자가 할 수 있는 모든 주행을 시스템이 완벽하게 대체하는 궁극적인 자율주행 단계이다.
2. 자율주행 기술의 역사와 발전 과정
자율주행 기술의 역사는 20세기 중반으로 거슬러 올라간다. 초기에는 주로 군사적 목적이나 자동화된 운송 시스템 연구의 일환으로 시작되었다.
2.1. 초기 연구 및 개념 정립 (1950년대 ~ 1980년대)
1950년대에는 제너럴 모터스(GM)가 '미래의 고속도로(Future Highway)'라는 개념을 제시하며, 도로에 매설된 전선을 통해 차량을 제어하는 아이디어를 선보였다. 이는 오늘날 자율주행의 초기 구상으로 볼 수 있다. 1980년대에는 카네기 멜론 대학교의 ALVINN(Autonomous Land Vehicle In a Neural Network) 프로젝트가 신경망을 이용해 도로를 인식하고 주행하는 연구를 진행하며 인공지능의 가능성을 보여주었다.
2.2. DARPA 챌린지 및 센서 기술 발전 (2000년대)
자율주행 기술 발전에 결정적인 전환점이 된 것은 미국 국방부 산하 방위고등연구계획국(DARPA)이 주최한 'DARPA 그랜드 챌린지'와 '어반 챌린지'이다. 2004년부터 시작된 이 대회들은 무인 차량이 사막이나 도시 환경에서 정해진 코스를 완주하는 것을 목표로 했으며, 라이다(LiDAR), 레이더(Radar), 카메라 등 다양한 센서 기술과 인공지능 기반의 환경 인식 및 경로 계획 기술 발전을 촉진했다. 스탠퍼드 대학교의 '스탠리(Stanley)'와 카네기 멜론 대학교의 '보스(Boss)' 등이 이 대회를 통해 자율주행 기술의 실현 가능성을 입증했다.
2.3. 인공지능 및 빅데이터 도입 (2010년대)
2010년대에 들어서면서 딥러닝을 비롯한 인공지능 기술의 비약적인 발전과 컴퓨팅 파워의 증가는 자율주행 기술 발전에 가속도를 붙였다. 구글(현 웨이모)은 2009년부터 자율주행차 프로젝트를 시작하며 실제 도로 주행 데이터를 대규모로 수집하고, 이를 기반으로 인공지능 알고리즘을 고도화했다. 테슬라는 카메라 기반의 비전 시스템과 인공지능을 활용한 자율주행 기술을 개발하며 상용차에 적용하기 시작했다. 이 시기에는 고정밀 지도 기술과 V2X(Vehicle-to-everything) 통신 기술의 중요성도 부각되었다.
2.4. 상용화 경쟁 심화 (2020년대 이후)
현재는 레벨 2, 3 수준의 자율주행 기능이 상용차에 폭넓게 적용되고 있으며, 레벨 4 수준의 로보택시 서비스가 일부 지역에서 시범 운영되거나 상용화 초기 단계에 진입했다. 웨이모, 크루즈(Cruise), 바이두(Baidu) 등은 특정 지역에서 운전자 없는 로보택시 서비스를 제공하며 기술의 안정성과 신뢰성을 입증하고 있다. 완성차 제조사들은 물론, 엔비디아(NVIDIA), 인텔(Intel) 모빌아이(Mobileye)와 같은 반도체 및 소프트웨어 기업들도 자율주행 시장의 주도권을 잡기 위해 치열하게 경쟁하고 있다.
3. 자율주행의 핵심 기술 및 원리
자율주행 시스템은 크게 주변 환경을 인지하는 센서, 수집된 데이터를 분석하고 판단하는 인공지능, 정확한 위치를 파악하는 고정밀 지도 및 측위 기술, 그리고 차량을 제어하는 제어 시스템으로 구성된다. 이 네 가지 핵심 기술이 유기적으로 결합하여 자율주행을 가능하게 한다.
3.1. 환경 인지 센서 기술
자율주행차는 사람의 눈과 같은 역할을 하는 다양한 센서를 통해 주변 환경을 인식한다.
카메라 (Camera): 차량 주변의 시각 정보를 수집하여 차선, 신호등, 표지판, 보행자, 다른 차량 등을 식별한다. 색상 정보를 얻을 수 있고 비용이 저렴하며 해상도가 높다는 장점이 있지만, 빛의 변화(역광, 터널), 날씨(안개, 비, 눈)에 취약하다는 단점이 있다.
레이더 (Radar): 전파를 발사하여 물체에 반사되어 돌아오는 시간을 측정해 물체와의 거리, 속도, 방향을 감지한다. 날씨 변화에 강하고 장거리 감지에 유리하며, 특히 전방 충돌 방지 시스템(FCW)이나 어댑티브 크루즈 컨트롤(ACC)에 필수적으로 사용된다. 하지만 물체의 형상을 정확히 파악하기 어렵다는 한계가 있다.
라이다 (LiDAR): 레이저 펄스를 발사하여 반사되는 시간을 측정해 주변 환경의 3D 지도를 생성한다. 매우 정밀한 거리 및 형태 정보를 제공하며, 야간에도 뛰어난 성능을 발휘한다. 자율주행차의 '눈' 또는 '뇌'의 핵심 센서로 불리지만, 높은 비용과 날씨에 따른 성능 저하 가능성이 단점으로 지적된다.
초음파 센서 (Ultrasonic Sensor): 주로 근거리 물체 감지에 사용되며, 주차 보조 시스템이나 저속 주행 시 장애물 감지에 활용된다.
3.2. 인공지능 및 머신러닝
다양한 센서에서 수집된 방대한 데이터는 인공지능(AI)과 머신러닝(ML) 알고리즘을 통해 분석되고 해석된다. 이는 자율주행차의 '뇌' 역할을 한다.
데이터 융합 (Sensor Fusion): 각 센서의 장단점을 보완하기 위해 여러 센서에서 얻은 데이터를 통합하여 보다 정확하고 신뢰성 있는 환경 모델을 구축한다. 예를 들어, 카메라의 시각 정보와 라이다의 3D 거리 정보를 결합하여 물체의 종류와 위치를 더욱 정확하게 파악한다.
객체 인식 및 분류 (Object Detection & Classification): 딥러닝 기반의 컴퓨터 비전 기술을 활용하여 이미지 및 3D 포인트 클라우드 데이터에서 차량, 보행자, 자전거, 차선, 신호등 등을 실시간으로 감지하고 분류한다.
경로 계획 및 의사 결정 (Path Planning & Decision Making): 인식된 환경 정보와 고정밀 지도를 바탕으로 안전하고 효율적인 주행 경로를 계획한다. 이는 예측 알고리즘을 통해 다른 차량이나 보행자의 움직임을 예측하고, 이에 따라 차선 변경, 속도 조절, 정지 등의 의사결정을 내리는 과정을 포함한다. 강화 학습(Reinforcement Learning)과 같은 고급 AI 기술이 활용되기도 한다.
3.3. 고정밀 지도 및 측위 기술
자율주행차는 정확한 위치 파악과 주변 환경에 대한 상세한 정보를 위해 고정밀 지도(HD Map)와 정밀 측위 기술을 필요로 한다.
고정밀 지도 (HD Map): 일반 내비게이션 지도보다 훨씬 정밀한 정보를 제공한다. 차선 정보, 도로 경계, 신호등 위치, 표지판, 노면 표시, 심지어 가로수나 건물과 같은 주변 지형지물까지 센티미터 단위의 정확도로 포함한다. 이는 센서의 한계를 보완하고, 차량이 현재 위치를 정확히 파악하며, 미리 경로를 계획하는 데 필수적이다.
정밀 측위 (Precise Positioning): GPS(GNSS) 신호와 함께 IMU(관성 측정 장치), 휠 속도 센서, 카메라, 라이다 등 다양한 센서 데이터를 융합하여 차량의 정확한 위치를 실시간으로 파악한다. 특히 RTK(Real-Time Kinematic) GPS나 PPP(Precise Point Positioning)와 같은 기술은 GPS 오차를 보정하여 수 센티미터 수준의 정밀한 위치 정보를 제공한다.
3.4. 제어 시스템 (Drive-by-Wire)
자율주행 시스템의 판단과 계획에 따라 차량을 실제로 움직이는 것이 제어 시스템이다. 이는 'Drive-by-Wire' 기술을 기반으로 한다.
전자식 제어 (Electronic Control): 기존의 기계식 연결(스티어링 휠과 바퀴, 브레이크 페달과 브레이크 등)을 전기 신호로 대체하는 기술이다. 스티어 바이 와이어(Steer-by-Wire), 브레이크 바이 와이어(Brake-by-Wire), 스로틀 바이 와이어(Throttle-by-Wire) 등이 이에 해당한다. 이를 통해 자율주행 시스템이 차량의 조향, 가속, 제동을 정밀하게 제어할 수 있게 된다.
차량 동역학 제어 (Vehicle Dynamics Control): 차량의 안정성과 승차감을 유지하면서 경로를 정확하게 추종하도록 제어한다. 이는 속도 제어, 차선 유지 제어, 장애물 회피 제어 등 다양한 하위 제어 알고리즘을 포함한다.
4. 주요 활용 사례 및 응용 분야
자율주행 기술은 단순히 개인 승용차를 넘어 다양한 운송 및 물류 분야에서 혁신적인 변화를 가져오고 있다.
4.1. 승용차 및 대중교통
개인 승용차: 현재 레벨 2 수준의 자율주행 기능(고속도로 주행 보조, 차선 변경 보조 등)이 고급차종을 중심으로 보편화되고 있으며, 테슬라와 같은 일부 제조사는 레벨 3에 준하는 기능을 제공하며 운전자의 편의성을 높이고 있다. 미래에는 완전 자율주행 승용차가 보편화되어 운전자가 운전에서 완전히 해방되는 시대를 열 것으로 기대된다.
로보택시 (Robotaxi): 레벨 4 수준의 자율주행 기술을 기반으로 운전자 없이 승객을 운송하는 서비스이다. 웨이모(Waymo), 크루즈(Cruise), 바이두(Baidu) 등은 미국 피닉스, 샌프란시스코, 중국 베이징 등 일부 도시에서 로보택시 서비스를 상용화하거나 시범 운영하고 있다. 이는 대중교통의 효율성을 높이고, 이동 약자의 접근성을 개선하며, 교통 체증 및 주차 문제 해결에 기여할 것으로 보인다.
자율주행 셔틀: 특정 구간을 정기적으로 운행하는 자율주행 셔틀버스도 상용화되고 있다. 공항, 대학 캠퍼스, 산업 단지, 신도시 등에서 고정된 노선을 운행하며 대중교통의 보조적인 역할을 수행한다. 국내에서도 세종시, 순천만국가정원 등에서 자율주행 셔틀이 운영된 바 있다.
4.2. 물류 및 배송
자율주행 트럭: 장거리 운송에 특화된 자율주행 트럭은 물류 비용 절감, 운전자 피로도 감소, 운행 시간 증대 등의 이점을 제공한다. 투심플(TuSimple), 오로라(Aurora) 등은 고속도로를 중심으로 자율주행 트럭 운송 서비스를 개발 및 시범 운영하고 있다.
배송 로봇: 라스트마일(Last-mile) 배송에 활용되는 자율주행 배송 로봇은 도심이나 아파트 단지 내에서 소규모 물품을 배송한다. 이는 인력난 해소와 배송 효율성 증대에 기여하며, 국내에서도 우아한형제들의 '딜리'와 같은 배송 로봇이 시범 운영되고 있다.
4.3. 기타 운송수단
철도: 지하철, 경전철 등 도시 철도 시스템에서는 이미 높은 수준의 무인 운전 시스템이 적용되고 있다. 이는 정시성 확보와 운영 효율성 증대에 크게 기여한다.
항공기: 항공기는 이륙 및 착륙 시 조종사의 개입이 필요하지만, 순항 비행 중에는 오토파일럿 시스템을 통해 상당 부분 자율 비행이 이루어진다. 미래에는 완전 자율 비행 항공기 및 드론 택시(UAM) 개발이 활발히 진행될 것으로 예상된다.
선박: 자율운항 선박은 항해 중 충돌 회피, 경로 최적화, 연료 효율 증대 등을 목표로 개발되고 있다. 현대중공업그룹의 아비커스(Avikus)는 대형 선박의 자율운항 솔루션을 개발하며 상용화를 추진 중이다.
5. 현재 동향 및 상용화 수준
현재 자율주행 기술은 빠른 속도로 발전하며 상용화 단계를 밟고 있으나, 완전 자율주행(레벨 5)에 도달하기까지는 여전히 많은 과제가 남아있다.
5.1. 상용화 현황 및 주요 기업 경쟁
현재 시장에서는 레벨 2 수준의 자율주행 기능이 보편화되어 신차 구매 시 쉽게 접할 수 있다. 고속도로 주행 보조(HDA), 차선 유지 보조(LKA), 어댑티브 크루즈 컨트롤(ACC) 등이 대표적이다. 레벨 3 자율주행은 특정 조건(예: 고속도로 정체 구간)에서 운전자의 개입 없이 주행이 가능한 수준으로, 메르세데스-벤츠의 '드라이브 파일럿'과 혼다의 '레전드'가 일본과 독일 등 일부 국가에서 상용화되었다.
레벨 4 자율주행은 특정 운행 설계 영역(ODD) 내에서 운전자 개입 없이 완전 자율주행이 가능한 단계로, 웨이모(Waymo)와 크루즈(Cruise)가 미국 피닉스, 샌프란시스코 등에서 로보택시 서비스를 운영하며 선두를 달리고 있다. 중국에서는 바이두(Baidu)의 아폴로(Apollo)가 우한, 충칭 등에서 로보택시를 운영 중이다.
주요 완성차 제조사들은 물론, 구글 웨이모, GM 크루즈, 바이두, 그리고 엔비디아, 인텔 모빌아이와 같은 기술 기업들이 자율주행 소프트웨어 및 하드웨어 개발에 막대한 투자를 하며 치열한 경쟁을 벌이고 있다. 특히 소프트웨어 정의 차량(SDV)으로의 전환이 가속화되면서, 자율주행 기술은 차량의 핵심 경쟁력으로 부상하고 있다.
5.2. 기술적 도전 과제
자율주행 기술의 완전한 상용화를 위해서는 여전히 해결해야 할 기술적 난제들이 많다.
악천후 및 비정형 환경 대응: 폭우, 폭설, 짙은 안개 등 악천후 상황에서는 센서의 인지 능력이 크게 저하될 수 있다. 또한, 공사 구간, 비포장도로, 예측 불가능한 보행자 행동 등 비정형적인 주행 환경에서의 안정적인 대응 능력 확보가 중요하다.
엣지 케이스 (Edge Cases) 처리: 일반적이지 않고 드물게 발생하는 '엣지 케이스' 상황(예: 도로 위의 특이한 물체, 비정상적인 교통 흐름)에 대한 시스템의 판단 및 대응 능력 강화가 필요하다. 이를 위해 방대한 양의 실제 주행 데이터와 시뮬레이션 데이터를 활용한 학습이 필수적이다.
사이버 보안: 자율주행차는 외부 네트워크에 연결되어 해킹의 위협에 노출될 수 있다. 차량 제어 시스템에 대한 사이버 공격은 심각한 안전 문제를 야기할 수 있으므로, 강력한 보안 시스템 구축이 필수적이다.
높은 컴퓨팅 파워 및 전력 소모: 복잡한 인공지능 알고리즘과 수많은 센서 데이터를 실시간으로 처리하기 위해서는 고성능 컴퓨팅 하드웨어가 필요하며, 이는 차량의 전력 소모를 증가시키는 요인이 된다.
5.3. 법적 및 윤리적 도전 과제
기술 발전과 더불어 법적, 윤리적 문제 또한 자율주행 상용화의 중요한 걸림돌로 작용하고 있다.
사고 책임 소재: 자율주행차 사고 발생 시 책임 소재를 누구에게 물을 것인가(운전자, 제조사, 소프트웨어 개발사 등)에 대한 명확한 법적 기준이 아직 정립되지 않았다. 이는 기술 개발 및 보험 제도에 큰 영향을 미친다.
규제 및 표준화: 각국 정부는 자율주행차의 안전성 확보를 위한 규제 프레임워크를 마련하고 있으며, 국제적인 표준화 노력도 진행 중이다. 하지만 기술 발전 속도에 맞춰 법규를 정비하는 것이 쉽지 않다.
윤리적 딜레마 (Trolley Problem): 피할 수 없는 사고 상황에서 자율주행차가 누구의 생명을 우선시해야 하는가와 같은 윤리적 딜레마는 사회적 합의가 필요한 부분이다. 예를 들어, 보행자와 탑승자 중 누구를 보호할 것인가와 같은 문제는 시스템 설계에 있어 중요한 고려 사항이다.
데이터 프라이버시: 자율주행차는 운전자의 이동 경로, 습관 등 민감한 개인 정보를 수집할 수 있다. 이러한 데이터의 수집, 저장, 활용에 대한 투명성과 보안성 확보가 중요하다.
6. 자율주행 기술의 미래 전망 및 기대 효과
자율주행 기술은 미래 사회의 모습을 근본적으로 변화시킬 잠재력을 가지고 있으며, 다양한 분야에서 혁신적인 기대 효과를 가져올 것으로 전망된다.
6.1. 미래 사회 변화 예측
교통 시스템의 혁신: 완전 자율주행 시대가 도래하면 교통 체증이 크게 감소하고, 교통 흐름이 최적화될 것이다. 차량 간 통신(V2V)과 인프라 통신(V2I)을 통해 도로 위의 모든 차량이 유기적으로 연결되어 효율적인 운행이 가능해진다. 또한, 주차 공간 활용의 효율성이 증대되고, 개인 차량 소유의 필요성이 줄어들며 공유 모빌리티 서비스가 더욱 활성화될 수 있다.
도시 계획 및 인프라 변화: 자율주행차에 최적화된 스마트 도시 인프라가 구축될 것이다. 이는 도로 설계, 신호 체계, 주차 공간 등 도시 전반의 변화를 유도하며, 대중교통 시스템과의 연계를 통해 도시 이동성을 극대화할 수 있다.
경제 및 고용 시장 영향: 물류 및 운송 산업의 효율성이 극대화되어 비용 절감 효과가 발생할 것이다. 새로운 모빌리티 서비스 시장이 창출되고 관련 산업이 성장할 것으로 예상된다. 반면, 전문 운전자 직업(택시, 트럭, 버스 기사 등)의 감소 가능성도 제기되어, 이에 대한 사회적 대비가 필요하다.
개인의 삶의 질 향상: 운전으로부터 자유로워진 시간은 개인의 생산성 향상이나 여가 활동에 활용될 수 있다. 이동 약자(노약자, 장애인)의 이동권이 크게 확대되며, 교통사고 감소로 인한 사회적 비용 절감 및 생명 보호 효과도 기대된다.
6.2. 완전 자율주행 시대의 도래 시점 및 과제
전문가들은 레벨 5 완전 자율주행의 상용화 시점에 대해 다양한 예측을 내놓고 있다. 일부는 2030년대 중반 이후로 예상하며, 기술적 난제와 사회적 합의가 필요함을 강조한다. 특히, 모든 기상 조건과 모든 도로 환경에서 인간 운전자를 능가하는 안전성을 확보하는 것이 가장 큰 과제이다.
또한, 앞서 언급된 기술적, 법적, 윤리적 과제들을 해결하기 위한 지속적인 연구 개발과 국제적인 협력, 그리고 사회적 논의가 필수적이다. 특히, 자율주행 시스템의 투명성과 신뢰성을 확보하고, 사고 발생 시 책임 소재를 명확히 하며, 윤리적 기준을 수립하는 것이 중요하다.
6.3. 윤리적 논의의 중요성
자율주행 기술은 단순한 공학적 문제를 넘어 사회 전체의 가치관과 윤리적 판단에 영향을 미친다. '트롤리 딜레마'와 같은 극단적인 상황뿐만 아니라, 시스템의 편향성, 데이터 프라이버시, 인간과 기계의 상호작용 방식 등 다양한 윤리적 질문에 대한 답을 찾아야 한다. 기술 개발 단계부터 사회 각계각층의 참여를 통해 윤리적 가이드라인을 수립하고, 기술이 인간의 존엄성과 안전을 최우선으로 하도록 설계하는 노력이 지속되어야 할 것이다.
자율주행 기술은 인류에게 전례 없는 이동의 자유와 편의를 제공할 잠재력을 가지고 있다. 기술의 발전과 함께 사회적 합의와 제도적 정비가 조화를 이룰 때, 우리는 비로소 안전하고 지속 가능한 자율주행 시대를 맞이할 수 있을 것이다.
참고 문헌
SAE International. (2021). J3016_202104: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.
National Highway Traffic Safety Administration (NHTSA). (2022). Automated Vehicles for Safety. Retrieved from https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
Mercedes-Benz. (2023). DRIVE PILOT. Retrieved from https://www.mercedes-benz.com/en/innovation/drive-pilot/
Carnegie Mellon University. (n.d.). ALVINN. Retrieved from https://www.cs.cmu.edu/~tjochem/alvinn/alvinn.html
DARPA. (n.d.). Grand Challenge. Retrieved from https://www.darpa.mil/about-us/timeline/grand-challenge
Waymo. (n.d.). Our history. Retrieved from https://waymo.com/journey/
Cruise. (2023). Cruise Origin. Retrieved from https://www.getcruise.com/origin/
Mobileye. (2023). Mobileye SuperVision™ and Mobileye Chauffeur™. Retrieved from https://www.mobileye.com/our-technology/mobileye-supervision-and-mobileye-chauffeur/
Kim, J. H., & Kim, J. H. (2022). A Review of Sensor Fusion Techniques for Autonomous Driving. Journal of Advanced Transportation, 2022.
Chen, X., et al. (2023). Deep Learning for Autonomous Driving: A Survey. IEEE Transactions on Intelligent Transportation Systems, 24(1), 1-20.
Jo, K., et al. (2022). High-Definition Map Generation and Localization for Autonomous Driving: A Survey. Sensors, 22(1), 321.
Guldner, S., et al. (2021). Drive-by-Wire Systems for Autonomous Vehicles: A Review. SAE Technical Paper, 2021-01-0863.
Tesla. (n.d.). Autopilot and Full Self-Driving Capability. Retrieved from https://www.tesla.com/autopilot
Baidu Apollo. (n.d.). Robotaxi. Retrieved from https://apollo.baidu.com/robotaxi
국토교통부. (2023). 자율주행 셔틀 서비스 확대.
TuSimple. (n.d.). Autonomous Freight Network. Retrieved from https://www.tusimple.com/technology/autonomous-freight-network
우아한형제들. (n.d.). 배달의민족 자율주행 로봇 '딜리'. Retrieved from https://www.woowahan.com/tech/robot-delivery
Siemens Mobility. (n.d.). Automated Train Operation. Retrieved from https://www.siemens.com/global/en/products/mobility/rail-solutions/automation/automated-train-operation.html
Airbus. (n.d.). Urban Air Mobility. Retrieved from https://www.airbus.com/en/innovation/future-mobility/urban-air-mobility
Avikus. (n.d.). Autonomous Navigation. Retrieved from https://www.avikus.ai/technology/autonomous-navigation
Honda. (2021). Honda SENSING Elite. Retrieved from https://global.honda/newsroom/news/2021/4210304eng.html
Deloitte. (2023). The future of mobility: Autonomous vehicles. Retrieved from https://www2.deloitte.com/us/en/pages/manufacturing/articles/future-of-mobility-autonomous-vehicles.html
Badue, C., et al. (2021). Self-Driving Cars: A Survey. Expert Systems with Applications, 165, 113812.
European Union Agency for Cybersecurity (ENISA). (2022). Cybersecurity of Autonomous Vehicles. Retrieved from https://www.enisa.europa.eu/publications/cybersecurity-of-autonomous-vehicles
Fagnant, D. J., & Kockelman, K. (2021). Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations. Transportation Research Part A: Policy and Practice, 144, 1-14.
Bonnefon, J. F., et al. (2016). The social dilemma of autonomous vehicles. Science, 352(6293), 1573-1576.
McKinsey & Company. (2023). Autonomous driving: The path to adoption. Retrieved from https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-driving-the-path-to-adoption
KPMG. (2022). Autonomous Vehicles Readiness Index. Retrieved from https://kpmg.com/xx/en/home/insights/2022/07/autonomous-vehicles-readiness-index.html
Gartner. (2023). Hype Cycle for Automotive and Smart Mobility.
산업 전반에 걸쳐 시뮬레이션 기준의 지각변동을 예고한다.
이번 발표는 웨이모가 새로운 도시로의 확장 및 서비스 스케일업(규모 확대)을 가속화할 수 있는 단단한 기반을 마련해 줄 것이다. 지니 3 기반의 웨이모
웨이모
웨이모(Waymo)는 알파벳(Alphabet) 산하 자율주행 기술 기업으로, 자율주행 시스템인 Waymo Driver를 기반으로
일반 대중이 이용 가능한 로보택시(무인 호출형 차량) 서비스를 운영한다. 대표 서비스명은 Waymo One이며,
미국 주요 도시에서 상업 운행을 확장해 왔다.
새로운 목차
1. 개요: 웨이모와 Waymo One
2. 핵심 기술: Waymo Driver, 센서·지도·데이터
3. 서비스 운영과 주행 테스트: 서비스 지역, 파트너십, 확장
4. 역사와 시제품: 구글 프로젝트에서 6세대 하드웨어까지
5. 법률·사고·논란: 규제 체계, 리콜, 사회적 쟁점
1. 개요: 웨이모와 Waymo One
웨이모는 무인 자율주행을 목표로 하는 상용 서비스를 중심에 두고 있으며, 이용자는 앱을 통해 차량을 호출해 이동한다.
서비스는 24시간 운영을 표방하며, 도시별로 운행 가능 구역(지오펜스)을 설정해 운행 안전성과 운영 효율을 관리한다.
일부 도시는 자사 앱이 아닌 외부 플랫폼과의 연계를 통해 이용 경험을 제공하기도 한다.
2. 핵심 기술: Waymo Driver, 센서·지도·데이터
2.1 센서 융합과 인지(Perception)
웨이모의 자율주행은 카메라, 라이다(LiDAR), 레이더(Radar) 등 다중 센서의 정보를 결합(센서 융합)해 주변 객체와 도로 상황을 인지하고,
주행 경로를 계획한 뒤 차량을 제어하는 방식으로 설명된다. 웨이모는 자사 공개 자료에서 라이다의 3차원 환경 인지, 카메라의 360도 시야,
레이더의 속도·거리 측정 등 센서별 역할을 구분해 안내한다.
2.2 6세대(6th-gen) Waymo Driver 하드웨어
웨이모는 6세대 자율주행 하드웨어를 공개하며, 비용 최적화와 성능 향상을 목표로 한 센서 구성을 제시했다.
공개된 사양에는 13대 카메라, 4대 라이다, 6대 레이더 및 외부 음향 수신 장치 등이 포함된다.
또한 혹한·우천 등 환경 대응을 위해 센서에 와이퍼, 히터, 분사 장치와 같은 물리적 보조 장치를 적용하는 방향이 언급된다.
2.3 고정밀 지도(HD Map)와 운영 데이터
웨이모 계열 접근법의 핵심 요소로는 고정밀 지도와 실시간 센서 데이터의 정합을 통한 위치 추정 및 안전 주행이 자주 거론된다.
한편, 웨이모는 학계·산업 생태계와의 접점을 위해 Waymo Open Dataset을 제공해 인지·추적 등 연구 과제의 벤치마크를 확산시켜 왔다.
이는 기술 검증과 인재·연구 커뮤니티 형성 측면에서 간접적인 경쟁력으로 작동한다.
2.4 특허 출원과 지식재산 전략(개요)
자율주행 산업에서는 센서 설계, 지도 제작·갱신, 인지·예측 알고리즘, 차량-관제 연동 등 다양한 층위에서 지식재산(IP)이 형성된다.
웨이모의 경우, 외부적으로는 기술 공개와 상용 서비스 확대를 병행하면서도, 분쟁(영업비밀·특허 등)을 통해
핵심 기술의 보호 범위를 다투는 양상이 확인되어 왔다.
3. 서비스 운영과 주행 테스트: 서비스 지역, 파트너십, 확장
3.1 운영 지역(서비스 에어리어)
웨이모는 미국에서 여러 도시를 중심으로 로보택시 서비스를 운영해 왔으며,
공식 안내 자료에서는 샌프란시스코 베이 에어리어, 피닉스, 로스앤젤레스 등이 핵심 서비스 권역으로 제시된다.
또한 오스틴과 애틀랜타에서는 우버(Uber) 플랫폼을 통해 웨이모를 경험하는 형태가 안내된다.
3.2 운영 방식: 지오펜스, 단계적 확장, 고속도로(프리웨이) 적용
웨이모 운영의 일반적 특징은 (1) 제한된 구역에서의 안정적 운행, (2) 데이터 축적과 소프트웨어 업데이트,
(3) 구역·시간대·도로 유형의 점진적 확대이다. 웨이모는 2025년 회고 성격의 공식 글에서
일부 도시에서 고속도로 주행 경험을 제공하고, 이후 더 많은 도시로 확대할 계획을 언급했다.
3.3 파트너십: 차량 플랫폼과 호출 플랫폼
로보택시 사업은 자율주행 소프트웨어만으로 완결되지 않으며, 차량 플랫폼(차종·전장 설계)과
호출·결제·고객지원 플랫폼의 결합이 중요하다. 웨이모는 기존 차량(예: 전기 SUV)을 기반으로 운용해 왔고,
최근에는 특정 목적형 로보택시 플랫폼을 도입하는 방향도 보도되었다.
4. 역사와 시제품: 구글 프로젝트에서 6세대 하드웨어까지
4.1 출발점과 분사
웨이모의 기원은 구글의 자율주행차 프로젝트로 거슬러 올라가며, 이후 알파벳 체제에서 독립 법인 형태로 정리되었다.
초기에는 실험용 차량(개조 차량, 시범 운행) 중심으로 기술 성숙을 추구했고, 시간이 지나며 유료 승객 대상 상용 서비스로 전환됐다.
4.2 상용 로보택시로의 전환
상용 전환의 핵심은 “기술 시연”에서 “운영 품질”로의 무게 중심 이동이다.
즉, 승객 안전 계획, 원격 지원 체계, 차량 유지보수, 운영 지역 내 예외 상황 대응 등 도시 단위의 운영 역량이 경쟁의 일부가 된다.
4.3 시제품 및 차세대 로보택시(Ojai 등)
2026년 CES 국면에서 웨이모의 차세대 로보택시로 보도된 ‘Ojai’는 특정 제조사와의 협업을 통해 제작되는
목적형 전기 밴 형태로 소개되었다. 보도에 따르면 차량은 해외에서 조립된 뒤 미국에서 웨이모의 6세대 자율주행 하드웨어가 통합되는 방식이 언급되며, 웨이모는 기존 운영 도시 외에 다수 도시로 확장을 시사한 바 있다.
5. 법률·사고·논란: 규제 체계, 리콜, 사회적 쟁점
5.1 규제 구조: 캘리포니아 DMV·CPUC의 이원 체계
캘리포니아에서는 자율주행차의 시험·배치(테스트/디플로이먼트) 허가를 주로 DMV가 다루고, 유상 여객 운송과 관련한 프로그램·보고 의무 등은 CPUC 프로그램 구조 안에서 운영되는 것으로 안내된다.
실제로 웨이모의 운행 가능 구역 확대는 DMV 문서에서 허가·갱신 형태로 공지되며, CPUC는 승객 안전 계획 및 정기 보고와 같은 틀을 제시한다.
5.2 리콜과 소프트웨어 업데이트
자율주행 시스템은 소프트웨어가 안전 성능에 직접적인 영향을 미치기 때문에, 결함 가능성이 확인되면 대규모 소프트웨어 업데이트 또는 리콜 형태로 시정되는 사례가 발생한다.
웨이모는 2024년 2월 “이전 소프트웨어”에 대한 자발적 리콜(업데이트)을 공지했으며, 2025년에는 미국 도로교통안전국(NHTSA) 리콜 문서에서도 소프트웨어 업데이트를 통한 시정 내용이 확인된다.
5.3 사고·운영 장애와 안전성 논쟁
로보택시는 실제 도로 환경의 예외 상황(공사 구간 변화, 신호 장애, 돌발 객체 등)에서 운영 안정성이 시험대에 오른다.
2025년 말 샌프란시스코의 대규모 정전 상황에서 웨이모 차량이 교차로 등에서 운행 장애를 일으켜 교통 및 긴급차량 통행에 영향을 주었다는 보도가 있었고, 2026년 1월에는 규제 강화를 요구하는 운전기사 단체의 시위가 보도되며 사회적 갈등이 부각되었다.
또한 피닉스에서 차량이 경전철 선로 위에 정차해 승객이 대피하는 영상이 보도되는 등, 개별 사건이 기술 신뢰도 논쟁으로 연결되는 양상이 나타난다.
5.4 법률 분쟁: 영업비밀(트레이드 시크릿) 소송의 의미
웨이모는 자율주행 라이다 등 핵심 기술을 둘러싼 영업비밀 분쟁의 대표 사례로 자주 언급되는 웨이모-우버 소송을 겪었으며, 2018년 합의로 종료되었다.
이 사건은 자율주행 산업에서 인력 이동, 부품 설계, 소프트웨어 자산이 기업 경쟁력의 핵심이라는 점을 사회적으로 각인시킨 사례로 평가된다.
출처
Waymo 공식 웹사이트(서비스 운영 도시 안내): https://waymo.com/
Waymo 고객지원(서비스 에어리어): https://support.google.com/waymo/answer/9059119?hl=en
Waymo 블로그(6세대 Waymo Driver 소개, 2024-08-19): https://waymo.com/blog/2024/08/meet-the-6th-generation-waymo-driver
Waymo 블로그(자발적 리콜 공지, 2024-02-13): https://waymo.com/blog/2024/02/voluntary-recall-of-our-previous-software
NHTSA 리콜 문서(Part 573 Safety Recall Report 25E-034, PDF): https://static.nhtsa.gov/odi/rcl/2025/RCLRPT-25E034-2471.PDF
California DMV(자율주행 프로그램 안내): https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/
California DMV(웨이모 허가 구역/확장 공지): https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-testing-permit-holders/waymo-approved-areas-of-operation-for-driverless-testing-and-deployment/
California Public Utilities Commission(CPUC, AV 승객 서비스 프로그램): https://www.cpuc.ca.gov/regulatory-services/licensing/transportation-licensing-and-analysis-branch/autonomous-vehicle-programs
California Public Utilities Commission(CPUC, 분기 보고 안내): https://www.cpuc.ca.gov/regulatory-services/licensing/transportation-licensing-and-analysis-branch/autonomous-vehicle-programs/quarterly-reporting
AP News(샌프란시스코 시위 및 규제 논의 보도, 2026-01-09): https://apnews.com/article/ae899573f4b12aa1844656fa5f7365ec
San Francisco Chronicle(정전 시 웨이모 운영 장애 보도, 2026-01): https://www.sfchronicle.com/sf/article/daniel-lurie-waymo-blackouts-pge-21282099.php
PEOPLE(피닉스 경전철 선로 정차 사건 보도, 2026-01): https://people.com/passenger-forced-to-flee-self-driving-vehicle-after-stops-path-of-an-oncoming-train-11884070
The Guardian(웨이모-우버 합의 보도, 2018-02-09): https://www.theguardian.com/us-news/2018/feb/09/uber-waymo-reach-settlement-trade-secrets-trial
Uber Newsroom(웨이모-우버 합의 공지, 2018-02-09): https://www.uber.com/en-NO/newsroom/uber-waymo-settlement/
arXiv / CVPR 2020(웨이모 오픈 데이터셋 논문 PDF): https://openaccess.thecvf.com/content_CVPR_2020/papers/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.pdf
Car and Driver(차세대 로보택시 Ojai 보도, 2026-01): https://www.caranddriver.com/news/a69938250/waymo-ojai-autonomous-robotaxi-details/
월드 모델은 자율주행차의 안전성을 강화하고, 산업 전반의 변화를 이끌어낼 핵심적인 기술적 진보로 자리 잡을 전망이다.
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
