스포티파이가 자사 최고 개발자들이 12월 이후 단 한 줄의 코드도 직접 작성하지 않았다고 밝혔다. 클로드 코드(Claude Code)와 내부 시스템 ‘헝크(Honk)’를 활용해 AI가 코드를 생성하고 개발자는 감독만 한다. 매월 650건 이상의 AI 생성 풀 리퀘스트가 프로덕션에 병합되며, 엔지니어링 시간의 최대 90%를 절감했다.
“최고 개발자들, 코드 생성만 하고 감독한다”
스포티파이가 4분기 실적 발표에서 충격적인 발언을 내놓았다. 공동 CEO 구스타브 쇠데르스트룀(Gustav Söderström)은 “우리의 최고 개발자들은 12월 이후 단 한 줄의 코드도 작성하지 않았다”고 밝혔다.
테크크런치에 따르면, 쇠데르스트룀은 “그들은 실제로 코드를 생성하고 감독할 뿐이다”라고 설명했다. 그는 “이것은 큰 변화다. 실제로 일어나고 있고, 지금 빠르게 진행되고 있다… 우리는 적어도 1.5년간 이것이 일어나야 하는지가 아니라 언제 일어나야 하는지를 논의해왔다”고 덧붙였다.
스포티파이 엔지니어들은 ‘헝크(Honk)’라는 내부 시스템을 사용해 코딩과 제품 속도를 높이고 있다. 이 시스템은 클로드 코드(Claude Code)를 활용한 생성형 AI로 원격 실시간 코드 배포를 가능하게 한다. 쇠데르스트룀은 구체적인 예를 들었다. “스포티파이 엔지니어가 출근길 지하철에서 슬랙
슬랙
목차
슬랙(Slack)의 정의와 등장 배경
채널 중심 커뮤니케이션: 대화 구조를 표준화하는 방법
확장 생태계: 앱·봇·통합과 Slack Connect
실시간 협업 기능: 허들(Huddles)·캔버스(Canvas)·리스트(Lists)·Slack AI
요금제 선택과 “잘 쓰는 회사”의 운영 원칙
1) 슬랙(Slack)의 정의와 등장 배경
슬랙(Slack)은 팀이 업무 대화, 파일, 의사결정 기록을 한 공간에 모아 운영할 수 있도록 설계된 협업 플랫폼이다. 일반적인 업무 메신저가 “대화 전송”에 초점을 둔다면, 슬랙은 채널(channel) 구조를 중심으로 정보가 축적되고 검색되며, 외부 도구와 연결되어 업무 흐름을 자동화하는 데 중점을 둔다. 이 때문에 슬랙은 메신저이자 협업 허브(업무 포털)에 가깝다.
역사적으로 슬랙은 게임 개발 과정에서 내부 협업을 위해 만들어진 도구에서 출발해 상용화되었고, 이후 기업용 커뮤니케이션 시장에서 채널 기반 협업의 대표 서비스로 자리 잡았다. 현재는 세일즈포스(Salesforce) 계열 제품으로서 기업 협업과 업무 시스템 연결을 강화하는 방향으로 발전하고 있다.
2) 채널 중심 커뮤니케이션: 대화 구조를 표준화하는 방법
슬랙의 핵심은 “채널”을 중심으로 업무 대화를 분류·보관하는 구조다. 채널은 프로젝트, 조직, 주제, 고객사 등 기준에 따라 만들 수 있으며, 구성원은 필요한 채널에 참여해 맥락이 유지되는 대화를 이어간다. 이 구조는 개인 간 1:1 대화가 난립할 때 발생하는 정보 단절을 줄이고, 업무 기록을 조직의 자산으로 남기는 데 유리하다.
채팅 구성 요소의 실무적 의미
채널 메시지: 공통 맥락을 가진 팀 대화를 축적하는 기본 단위다.
DM(다이렉트 메시지): 빠른 확인이나 민감한 조율에 유용하지만, 지식 축적 관점에서는 최소화하는 것이 일반적으로 권장된다.
스레드(Thread): 메시지에 대한 후속 논의를 분리해 채널의 가독성을 높인다. “결정 사항은 스레드가 아니라 채널 본문에 재공지” 같은 운영 규칙이 있으면 효과가 커진다.
검색 가능한 기록(Searchable Log)이라는 관점
슬랙은 업무 대화와 파일이 채널 맥락과 함께 저장되는 것을 전제로 하며, 검색을 통해 과거 논의와 의사결정 근거를 재사용하도록 설계되어 있다. 즉, 단순 메신저 사용 습관(짧은 대화 후 휘발)에서 벗어나 “문서화된 대화”를 만드는 것이 활용의 출발점이다.
3) 확장 생태계: 앱·봇·통합과 Slack Connect
슬랙이 협업 플랫폼으로 평가받는 이유는 외부 도구와의 결합 능력에 있다. 프로젝트 관리, 개발, 고객지원, 지식관리, 일정, 설문 등 다양한 업무 도구를 슬랙과 연동하면, 알림을 한 곳에서 받는 수준을 넘어 승인·요청·배포 같은 액션을 슬랙 안에서 처리하도록 구성할 수 있다.
슬랙 앱(슬랙 봇)과 통합의 범주
알림 통합: Jira, GitHub, Asana 등에서 발생한 이벤트를 채널로 전달해 업무 흐름을 공유한다.
명령/워크플로 기반 자동화: 양식 제출, 승인 요청, 반복 보고 같은 절차를 워크플로로 표준화한다.
봇(Bot): 특정 채널에서 규칙 안내, 회의 리마인드, 간단한 질의응답 등 운영 보조 역할을 수행한다.
외부 협업: Slack Connect
Slack Connect는 외부 조직(고객사, 파트너, 협력업체 등)과 슬랙 채널 또는 DM 기반으로 협업할 수 있게 하는 기능이다. 이메일 중심 협업에서 발생하는 참조 누락, 버전 혼재, 응답 지연을 줄이고, 공동 채널에서 논의·파일·결정을 함께 관리하는 데 목적이 있다. 다만 외부 참여가 포함되는 만큼 채널 개설 기준, 권한, 보안·보존 정책을 사전에 정하는 것이 중요하다.
4) 실시간 협업 기능: 허들(Huddles)·캔버스(Canvas)·리스트(Lists)·Slack AI
허들(Huddles): 채널 안에서 즉시 시작하는 회의
허들은 채널 또는 DM에서 즉석 음성/영상 대화를 시작하는 기능으로, 짧은 동기화나 빠른 문제 해결에 적합하다. 화면 공유(다수 공유 포함)와 메모를 위한 전용 스레드 등 “대화→정리→후속 조치”를 한 흐름으로 묶는 방향으로 기능이 구성되어 있다.
캔버스(Canvas): 채널에 붙는 문서형 작업 공간
캔버스는 슬랙 내부에서 정보를 작성·정리·공유하는 문서형 공간이다. 채널의 목적, 업무 절차, 참고 링크, 회의록, 온보딩 가이드처럼 “항상 같은 정보를 반복해서 묻는 문제”를 줄이는 데 효과적이다. 또한 캔버스에는 파일, 미디어, 워크플로 등을 포함할 수 있어 채널을 운영 단위로 만드는 데 도움이 된다.
리스트(Lists): 슬랙 안에서 작업 항목을 관리하는 방식
리스트는 슬랙에서 작업을 항목 단위로 정리하고 협업할 수 있는 기능으로, 간단한 태스크 관리나 프로젝트 진행 상황 추적에 사용할 수 있다. 슬랙 대화에서 나온 실행 항목을 별도 도구로 옮기지 않고, 대화 맥락과 가까운 곳에서 관리하려는 목적에 부합한다.
Slack AI: 요약·검색·번역 등 정보 과부하를 줄이는 기능군
Slack AI는 채널/스레드 요약, 리캡(업데이트 정리), 검색 보조, 번역 등 “스크롤 부담”을 줄이는 방향의 기능을 제공한다. 운영 관점에서는 (1) 정보를 많이 생산하는 조직일수록 요약·리캡이 효율에 기여할 수 있고, (2) 중요한 결정과 실행 항목을 AI 요약에만 의존하지 않도록 캔버스/리스트/공지로 확정 기록을 남기는 습관이 필요하다.
5) 요금제 선택과 “잘 쓰는 회사”의 운영 원칙
요금제(플랜) 선택의 기준
슬랙 요금제는 조직 규모와 보안·관리 요구 수준, 그리고 AI 기능 및 외부 협업 범위를 기준으로 선택하는 것이 일반적이다. 단순히 “유료/무료”가 아니라, 메시지 보존·검색 범위, 관리자 기능, 보안 및 규정 준수, 외부 협업(Slack Connect) 운영, AI 기능 활용 계획을 함께 고려해야 한다.
소규모/실험 단계: 채널 운영 규칙을 정립하고, 핵심 팀부터 도입해 업무 대화의 표준을 만드는 데 초점을 둔다.
조직 확장 단계: 부서 간 협업 증가에 따라 권한/보안/표준 템플릿(캔버스·리스트) 체계를 강화한다.
엔터프라이즈 단계: 보안, 거버넌스, 데이터 보존/감사, 대규모 운영 정책이 핵심 변수가 된다.
슬랙을 “정말 잘 쓰는 회사”의 공통 운영 원칙
채널 설계가 먼저다: 프로젝트/업무영역/고객 기준으로 채널 체계를 정의하고 네이밍 규칙을 고정한다.
결정과 기준은 캔버스에 남긴다: 채널 목적, 의사결정, 업무 절차, FAQ를 캔버스로 표준화해 반복 커뮤니케이션 비용을 줄인다.
실행 항목은 리스트로 수렴시킨다: 대화에서 나온 할 일을 리스트로 모아 “누가, 무엇을, 언제까지”를 명확히 한다.
허들은 짧고 기록은 남긴다: 빠르게 해결하되, 결과와 후속 조치는 채널 공지나 캔버스에 정리해 재사용 가능하게 만든다.
통합은 단계적으로: 초기부터 앱을 과도하게 붙이면 알림 피로가 생긴다. 핵심 업무 흐름(개발, 지원, 영업 등)부터 통합을 설계한다.
외부 협업은 Slack Connect 정책이 핵심: 초대 기준, 채널 생성 권한, 데이터 공유 범위, 보안·보존 정책을 문서화한다.
출처
Slack Help Center - Slack plans and features
Slack - Pricing
Slack Help Center - Use huddles in Slack
Slack Help Center - Use a canvas in Slack
Slack Help Center - Use lists in Slack
Slack - AI features
Slack Help Center - Guide to AI features in Slack
Slack Help Center - Slack Connect guide
Slack - Integrations
Encyclopaedia Britannica - Slack
Wikipedia - Slack Technologies
(Slack)을 통해 휴대폰으로 클로드에게 버그를 수정하거나 iOS 앱에 새 기능을 추가하라고 말할 수 있다. 클로드가 작업을 마치면 엔지니어는 슬랙을 통해 휴대폰으로 새 버전의 앱을 푸시받아, 사무실에 도착하기도 전에 프로덕션에 병합할 수 있다.”
월 650건 AI 풀 리퀘스트, 시간 90% 절감
헝크 시스템은 스포티파이가 2022년부터 구축해온 ‘플릿 매니지먼트’라는 프레임워크
프레임워크
1. 프레임워크란 무엇인가?
소프트웨어 프레임워크는 새로운 애플리케이션을 더 효율적으로 개발할 수 있도록 설계된 재사용 가능한 소프트웨어 구성 요소들의 모음입니다. 뼈대, 골조와 같이 개발의 기본 구조를 제공하여, 개발자가 반복적인 코드 작성을 줄이고 핵심 비즈니스 로직에 집중할 수 있도록 돕습니다.
프레임워크는 단순한 라이브러리와 달리 프로그램의 흐름을 직접 제어하는 디자인 패턴, 즉 제어 역전(Inversion of Control, IoC) 원칙을 활용합니다. 즉, 개발자가 프레임워크에 자신의 코드를 맞추는 방식으로 동작합니다.
2. 프레임워크의 작동 원리
프레임워크는 기본 코드 구조를 제공하며, 개발자는 그 위에 자신만의 기능을 추가합니다. 핵심 구성 요소에는 API, 코드 라이브러리, 디버거, 컴파일러 등이 포함됩니다.
API — 서로 다른 소프트웨어가 소통할 수 있는 규칙을 제공합니다.
코드 라이브러리 — 재사용 가능한 함수의 모음입니다.
제어 역전 (IoC) — 프로그램 흐름을 프레임워크가 관리하여 유연성과 유지보수성을 높입니다.
디버거/컴파일러 — 오류를 찾고 실행 가능한 코드로 변환해주는 도구입니다.
3. 프레임워크의 주요 장단점
장점
빠른 개발 — 반복적인 코드 작성 없이 기본 구조가 제공되어 개발 속도가 빨라집니다.
코드 품질 향상 — 표준화된 코드를 기반으로 하므로 버그가 줄고 가독성이 좋아집니다.
보안 강화 — 기본 보안 체크포인트가 내장된 경우가 많습니다.
협업과 유지보수 용이 — 일관된 구조로 새로운 개발자도 쉽게 코드를 이해합니다.
개발 유연성 — 프레임워크를 교체하거나 조합하여 확장하기가 상대적으로 쉽습니다.
단점
학습 비용 — 새로운 프레임워크 학습에 시간이 필요합니다.
유연성 제한 — 기본 구조에 맞춰야 하므로 자유로운 코드 작성이 어려울 수 있습니다.
프로젝트 과도한 복잡성 — 간단한 앱엔 오히려 과한 도구가 될 수 있습니다.
4. 대표적인 프레임워크 유형
프레임워크는 사용 목적과 개발 분야에 따라 구분됩니다:
웹 애플리케이션 프레임워크
웹 개발에서 서버 및 클라이언트 기능을 처리하는 도구입니다.
프론트엔드 — React, Angular, Vue.js 등 사용자 인터페이스 중심.
백엔드 — Django, Ruby on Rails, Spring 등 서버 로직 중심.
모바일 개발 프레임워크
단일 코드로 iOS와 Android 앱을 만들 수 있는 도구 (예: React Native, Flutter).
데이터 사이언스 프레임워크
머신러닝이나 대규모 데이터 처리를 위한 기반 (예: TensorFlow, PyTorch).
5. 프레임워크 선택 시 고려해야 할 요소
성공적인 소프트웨어 개발을 위해서는 프레임워크 선택이 중요합니다. 좋은 프레임워크는 다음과 같은 특성이 있습니다:
일관성 — 예측 가능한 동작과 구조를 제공합니다.
확장성과 품질 — 지속적인 업데이트와 보안 패치가 제공됩니다.
문서화 및 커뮤니티 지원 — 풍부한 문서와 활성 커뮤니티가 학습을 돕습니다.
프레임워크가 프로젝트에 적합한지 평가하려면, 구현하려는 기능, 팀 기술 수준, 유지보수 요구사항 등을 고려해야 합니다.
참고 및 출처
AWS – What is a Framework? :contentReference[oaicite:22]{index=22}
AWS – What is a Framework? (영문) :contentReference[oaicite:23]{index=23}
티스토리 – 프레임워크 장단점 :contentReference[oaicite:24]{index=24}
티스토리 – 소프트웨어 프레임워크 정의 :contentReference[oaicite:25]{index=25}
Kontent.ai – What is a Framework? :contentReference[oaicite:26]{index=26}
위에 구축됐다. 에브리데브AI(EveryDev.ai)에 따르면, 이 프레임워크는 수백 또는 수천 개의 리포지토리에 코드 변경을 한 번에 적용하는 시스템이다. AI 도입 전에도 스포티파이 풀 리퀘스트의 약 절반이 이 시스템을 통해 처리됐다.
2025년 7월 스포티파이는 클로드 에이전트 SDK를 플릿 매니지먼트 인프라에 통합했다. 에이전트는 자연어 프롬프트를 읽고, 코드베이스를 탐색하고, 변경을 수행한 뒤, 포매터, 린팅, 빌드, 테스트를 실행하고 풀 리퀘스트를 연다. 앤트로픽
앤트로픽
목차
앤트로픽이란 무엇인가?
설립 목적 및 비전
주요 사업 분야
앤트로픽의 발자취: 설립부터 현재까지
설립 및 초기 발전
주요 투자 및 파트너십
조직 및 주요 인물
핵심 기술과 연구 철학
헌법적 AI (Constitutional AI)
모델 해석 가능성 및 안전성 연구
주요 AI 모델: Claude
주요 제품 및 활용 분야
Claude 시리즈의 특징 및 응용
Model Context Protocol 및 개발자 도구
다양한 산업 및 프로젝트에서의 활용
현재 동향 및 시장에서의 위치
산업 내 경쟁 구도 및 협력
AI 안전 및 정렬(Alignment)에 대한 기여
시장 성과 및 성장세
미래 비전과 전망
AI 기술 발전 방향과 앤트로픽의 역할
사회적 영향 및 윤리적 고려
장기적인 목표와 도전 과제
앤트로픽이란 무엇인가?
앤트로픽은 2021년 설립된 미국의 인공지능(AI) 기업으로, 샌프란시스코에 본사를 두고 있다. 이 회사는 대규모 언어 모델(LLM)인 'Claude' 시리즈의 개발과 함께, AI 시스템의 안전성, 신뢰성, 그리고 해석 가능성에 중점을 둔 연구로 잘 알려져 있다. 앤트로픽은 스스로를 "AI 안전 및 연구 회사"로 정의하며, 신뢰할 수 있고 조종 가능한 AI 시스템을 구축하는 데 전념하고 있다.
설립 목적 및 비전
앤트로픽은 AI 시스템의 안전하고 유익한 개발을 목표로 하는 공익 법인(Public Benefit Corporation, PBC)이다. 이는 이사회가 주주의 재정적 이익과 함께 "변혁적 AI가 사람과 사회를 번성하도록 돕는" 별도의 임무를 법적으로 따를 수 있음을 의미한다. 즉, 이사회는 이익 증대보다 안전을 우선시하는 결정을 내릴 수 있는 법적 여지를 갖는다. 앤트로픽의 공동 창립자들은 AI가 인류의 장기적인 복지에 긍정적인 영향을 미치도록 시스템을 구축하는 데 헌신하고 있으며, AI의 기회와 위험에 대한 연구를 수행한다. 이들은 AI가 인류에게 전례 없는 위험을 초래할 수도 있지만, 동시에 전례 없는 이점을 가져올 잠재력도 있다고 믿는다. 이러한 비전 아래, 앤트로픽은 "안전을 최전선에 두는 AI 연구 및 제품"을 개발하고 있다.
주요 사업 분야
앤트로픽의 핵심 사업 영역은 크게 세 가지로 나뉜다. 첫째, 대규모 언어 모델(LLM) 개발이다. 대표적인 제품은 'Claude' 시리즈로, 대화, 글쓰기, 코딩, 이미지 분석 등 다양한 기능을 제공한다. 둘째, AI 안전 및 정렬(Alignment) 연구이다. 앤트로픽은 AI 시스템이 인간의 가치와 의도에 부합하도록 만드는 '정렬'에 깊이 집중하고 있으며, 이를 위해 '헌법적 AI'와 같은 독자적인 훈련 방법을 개발했다. 셋째, AI 모델의 내부 작동 방식을 이해하고 투명성을 확보하기 위한 해석 가능성(Interpretability) 연구이다. 앤트로픽은 이러한 연구를 통해 AI 시스템이 왜 특정 결정을 내리는지 이해하고, 잠재적인 위험을 사전에 식별하며 완화하는 데 주력한다. 이러한 사업 분야들은 모두 "신뢰할 수 있고, 해석 가능하며, 조종 가능한 AI 시스템"을 구축하려는 앤트로픽의 궁극적인 목표와 연결되어 있다.
앤트로픽의 발자취: 설립부터 현재까지
앤트로픽은 AI 안전에 대한 깊은 고민에서 시작하여, 주요 빅테크 기업들의 대규모 투자를 유치하며 빠르게 성장해왔다. 그들의 여정은 AI 윤리와 기술 개발의 균형을 추구하는 과정 그 자체이다.
설립 및 초기 발전
앤트로픽은 2021년 OpenAI의 전 연구원들, 특히 다리오 아모데이(Dario Amodei)와 다니엘라 아모데이(Daniela Amodei) 남매를 포함한 7명의 직원들이 설립했다. 이들은 OpenAI의 AI 안전에 대한 접근 방식에 대한 이견과 우려로 회사를 떠나 새로운 기업을 설립하게 되었다. 다리오 아모데이는 OpenAI의 연구 부사장(VP of Research)이었고, 다니엘라 아모데이는 안전 및 정책 부사장(VP of Safety & Policy)을 역임했다. 이들은 2016년 구글에서 "AI 안전의 구체적인 문제들(Concrete Problems in AI Safety)"이라는 논문을 공동 집필하며 신경망의 예측 불가능성과 안전성 위험에 대해 논의한 바 있다. 앤트로픽은 설립 직후인 2021년 5월, 연구 로드맵 실행 및 AI 시스템 프로토타입 구축을 위해 시리즈 A 펀딩으로 1억 2,400만 달러를 유치했다. 2022년 4월에는 FTX로부터 5억 달러를 포함해 총 5억 8천만 달러의 투자를 받았다. 같은 해 여름, 앤트로픽은 Claude의 첫 번째 버전을 훈련했지만, 추가적인 내부 안전성 테스트의 필요성과 잠재적으로 위험한 AI 개발 경쟁을 피하기 위해 즉시 출시하지 않았다.
주요 투자 및 파트너십
앤트로픽은 설립 이후 아마존, 구글 등 주요 빅테크 기업들로부터 대규모 투자를 유치하며 성장 동력을 확보했다. 2023년 9월, 아마존은 앤트로픽에 초기 12억 5천만 달러를 투자하고 총 40억 달러를 투자할 계획을 발표했다. 이 투자의 일환으로 앤트로픽은 아마존 웹 서비스(AWS)를 주요 클라우드 제공업체로 사용하며, AWS 고객에게 자사 AI 모델을 제공하게 되었다. 2024년 11월에는 아마존이 40억 달러를 추가 투자하여 총 투자액을 80억 달러로 늘렸다. 앤트로픽은 또한 AWS Trainium 및 Inferentia 칩을 사용하여 미래의 파운데이션 모델을 훈련하고 배포할 것이라고 밝혔다.
구글 또한 앤트로픽의 주요 투자자 중 하나이다. 2023년 10월, 구글은 앤트로픽에 5억 달러를 투자하고, 장기적으로 15억 달러를 추가 투자하기로 약속했다. 2025년 3월에는 10억 달러를 추가 투자하기로 합의했으며, 2025년 10월에는 구글과의 클라우드 파트너십을 통해 최대 100만 개의 구글 맞춤형 텐서 처리 장치(TPU)에 접근할 수 있게 되었다. 2025년 11월에는 엔비디아(Nvidia) 및 마이크로소프트(Microsoft)와도 파트너십을 발표하며, 엔비디아와 마이크로소프트가 앤트로픽에 최대 150억 달러를 투자하고, 앤트로픽은 마이크로소프트 애저(Azure)에서 엔비디아 AI 시스템을 구동하는 300억 달러 규모의 컴퓨팅 용량을 구매할 것이라고 밝혔다. 2025년 12월에는 스노우플레이크(Snowflake)와 2억 달러 규모의 다년간 파트너십을 체결하여 스노우플레이크 플랫폼을 통해 Claude 모델을 제공하기로 했다. 이러한 대규모 투자와 파트너십은 앤트로픽이 AI 개발 경쟁에서 강력한 입지를 다지는 데 중요한 역할을 하고 있다.
조직 및 주요 인물
앤트로픽은 공동 창립자인 다리오 아모데이(CEO)와 다니엘라 아모데이(President)를 중심으로 한 강력한 리더십 팀을 갖추고 있다. 주요 경영진 및 연구 인력은 다음과 같다:
다리오 아모데이 (Dario Amodei): CEO 겸 공동 창립자. OpenAI의 연구 부사장을 역임했으며, AI 시스템 훈련에 인간 피드백을 활용하는 기술 발전에 핵심적인 역할을 했다.
다니엘라 아모데이 (Daniela Amodei): 사장 겸 공동 창립자. OpenAI의 안전 및 정책 부사장을 역임했으며, 위험 완화 및 운영 감독을 담당했다.
마이크 크리거 (Mike Krieger): 최고 제품 책임자(CPO). 인스타그램 공동 창립자 출신으로, 2024년 5월 앤트로픽에 합류했다.
자레드 카플란 (Jared Kaplan): 최고 과학 책임자(CSO) 겸 공동 창립자. 이론 물리학자이자 존스 홉킨스 대학교 교수이며, 앤트로픽의 과학적 방향을 이끌고 파운데이션 모델 개발을 감독한다.
얀 라이케 (Jan Leike): 정렬 과학 리드. OpenAI의 슈퍼정렬 팀 공동 리더 출신으로, AI 시스템이 인간의 목표와 일치하도록 유지하는 방법을 개발하는 데 주력한다.
잭 클라크 (Jack Clark): 정책 책임자 겸 공동 창립자. OpenAI의 정책 이사를 역임했으며, AI 거버넌스 및 정책 수립에 기여한다.
톰 브라운 (Tom Brown): 최고 컴퓨팅 책임자(CCO) 겸 공동 창립자. OpenAI에서 GPT-3 연구 엔지니어링 팀을 이끌었으며, 앤트로픽의 컴퓨팅 인프라를 감독한다.
샘 맥캔들리시 (Sam McCandlish): 최고 설계 책임자(Chief Architect) 겸 공동 창립자. 스탠퍼드 대학교에서 이론 물리학 박사 학위를 취득했으며, 모델 훈련 및 대규모 시스템 개발에 집중한다.
앤트로픽은 델라웨어 공익 법인(PBC)으로 설립되었으며, "인류의 장기적인 이익을 위한 고급 AI의 책임감 있는 개발 및 유지"를 위한 목적 신탁인 "장기적 이익 신탁(Long-Term Benefit Trust, LTBT)"을 운영한다. LTBT는 앤트로픽 이사회에 이사를 선출할 수 있는 권한을 가진 Class T 주식을 보유하고 있으며, 2025년 10월 기준으로 닐 버디 샤(Neil Buddy Shah), 카니카 발(Kanika Bahl), 자크 로빈슨(Zach Robinson), 리처드 폰테인(Richard Fontaine)이 신탁의 구성원이다. 이러한 독특한 지배구조는 회사의 이익 추구와 공익적 사명 간의 균형을 맞추기 위한 앤트로픽의 노력을 보여준다.
핵심 기술과 연구 철학
앤트로픽은 AI 안전을 단순한 부가 기능이 아닌, 기술 개발의 핵심 철학으로 삼고 있다. 이러한 철학은 '헌법적 AI'와 같은 독자적인 방법론과 모델 해석 가능성 연구를 통해 구현되고 있다.
헌법적 AI (Constitutional AI)
'헌법적 AI'(Constitutional AI, CAI)는 앤트로픽이 개발한 독자적인 AI 훈련 프레임워크로, AI 시스템이 인간의 피드백 없이도 윤리적 원칙에 따라 스스로를 개선하도록 훈련하는 것을 목표로 한다. 전통적인 AI 훈련 방식이 인간의 직접적인 피드백(Human Feedback)에 크게 의존하는 것과 달리, 헌법적 AI는 AI 모델에 일련의 윤리적 원칙, 즉 '헌법'을 제공한다. 이 헌법은 AI가 생성하는 출력을 평가하고 수정하는 데 사용되는 규칙과 지침으로 구성된다. 예를 들어, Claude 2의 헌법 원칙 중 일부는 1948년 세계인권선언이나 애플의 서비스 약관과 같은 문서에서 파생되었다.
이 과정은 두 단계로 진행된다. 첫째, AI는 주어진 프롬프트에 대해 여러 응답을 생성한다. 둘째, AI는 '헌법'에 명시된 원칙에 따라 이 응답들을 스스로 평가하고, 가장 적합한 응답을 선택하여 모델을 개선한다. 이를 통해 AI는 유해하거나 편향된 콘텐츠를 생성할 가능성을 줄이고, 더욱 유용하고 정직한 답변을 제공하도록 학습된다. 헌법적 AI의 중요성은 AI 모델이 의도적이든 비의도적이든 가치 체계를 가질 수밖에 없다는 전제에서 출발한다. 앤트로픽은 이러한 가치 체계를 명시적이고 쉽게 변경할 수 있도록 만드는 것이 목표라고 설명한다. 이는 AI 안전을 위한 획기적인 접근 방식으로 평가되며, 상업용 제품인 Claude가 구체적이고 투명한 윤리적 지침을 따르도록 돕는다.
모델 해석 가능성 및 안전성 연구
앤트로픽은 AI 모델의 내부 작동 방식을 이해하고 투명성을 확보하기 위한 '해석 가능성'(Interpretability) 연구에 막대한 자원을 투자하고 있다. 이는 AI 안전의 근간이 되는 중요한 연구 분야이다. AI 모델, 특히 대규모 언어 모델은 복잡한 신경망 구조로 인해 '블랙박스'처럼 작동하는 경우가 많아, 왜 특정 결정을 내리는지 이해하기 어렵다. 앤트로픽의 해석 가능성 연구팀은 이러한 모델의 내부 메커니즘을 밝혀내어, AI가 어떻게 추론하고 학습하는지 파악하고자 한다.
예를 들어, 앤트로픽은 '회로 추적(Circuit Tracing)'과 같은 기술을 사용하여 Claude가 생각하는 과정을 관찰하고, 언어로 번역되기 전에 추론이 발생하는 공유 개념 공간을 발견했다. 이는 모델이 한 언어로 학습한 것을 다른 언어에 적용할 수 있음을 시사한다. 또한, 대규모 언어 모델의 자기 성찰(Introspection) 능력에 대한 연구를 통해 Claude가 자신의 내부 상태에 접근하고 보고할 수 있는 제한적이지만 기능적인 능력이 있음을 발견했다. 이러한 연구는 AI 시스템의 신뢰성을 높이고, 잠재적인 오작동이나 편향을 사전에 감지하고 수정하는 데 필수적이다.
안전성 연구는 AI 모델의 위험을 이해하고 미래 모델이 유용하고, 정직하며, 무해하게 유지되도록 개발하는 방법을 모색한다. 앤트로픽의 정렬(Alignment) 팀은 AI 모델의 위험을 이해하고, 미래 모델이 유용하고, 정직하며, 무해하게 유지되도록 하는 방법을 개발하는 데 주력한다. 여기에는 '헌법적 분류기(Constitutional Classifiers)'와 같은 기술을 개발하여 '탈옥(jailbreak)'과 같은 모델 오용 시도를 방어하는 연구도 포함된다. 또한, AI 모델이 훈련 목표를 선택적으로 준수하면서 기존 선호도를 전략적으로 유지하는 '정렬 위조(Alignment Faking)'와 같은 현상에 대한 연구도 수행하여, AI의 복잡한 행동 양상을 깊이 있게 탐구하고 있다.
주요 AI 모델: Claude
앤트로픽의 대표적인 대규모 언어 모델은 'Claude' 시리즈이다. 이 시리즈는 사용자에게 다양한 기능을 제공하며, 안전성과 성능을 지속적으로 개선하고 있다. 주요 Claude 모델은 Haiku, Sonnet, Opus 등으로 구성된다.
Claude Haiku: 속도와 효율성에 중점을 둔 모델로, 빠르고 간결한 응답이 필요한 작업에 적합하다. 2025년 10월 15일에 Haiku 4.5 버전이 발표되었다.
Claude Sonnet: 성능과 속도 사이의 균형을 제공하는 모델로, 다양한 비즈니스 및 연구 응용 분야에 활용될 수 있다. 2025년 9월 29일에 Sonnet 4.5 버전이 발표되었다.
Claude Opus: 앤트로픽의 가장 강력하고 지능적인 모델로, 복잡한 추론, 창의적인 콘텐츠 생성, 고급 코딩 작업 등 최고 수준의 성능이 요구되는 작업에 최적화되어 있다. 2025년 5월 Claude 4와 함께 Opus 4가 소개되었으며, 2025년 8월 5일에는 Opus 4.1이 발표되었다. Opus 4.5는 코딩, 에이전트, 컴퓨터 사용 및 엔터프라이즈 워크플로우를 위한 세계 최고의 모델로 소개되었다.
이러한 Claude 모델들은 앤트로픽의 안전성 및 정렬 연구와 긴밀하게 연계되어 개발되며, 사용자에게 신뢰할 수 있고 책임감 있는 AI 경험을 제공하는 것을 목표로 한다.
주요 제품 및 활용 분야
앤트로픽의 Claude 시리즈는 단순한 챗봇을 넘어 다양한 산업과 일상생활에 적용될 수 있는 강력한 AI 도구로 발전하고 있다. 개발자 도구와 기업 솔루션을 통해 그 활용 범위는 더욱 확대되고 있다.
Claude 시리즈의 특징 및 응용
Claude 챗봇은 대화, 글쓰기, 코딩, 이미지 분석 등 광범위한 기능을 제공한다.
대화 및 글쓰기: Claude는 자연스럽고 유창한 대화는 물론, 보고서 작성, 이메일 초안 작성, 창의적인 스토리텔링 등 다양한 유형의 텍스트 생성을 지원한다. 사용자의 의도를 정확히 파악하고 맥락에 맞는 응답을 제공하는 능력이 뛰어나다.
코딩 지원: Claude Code는 코딩 어시스턴트로서, 코드 생성, 디버깅, 코드 설명, 다양한 프로그래밍 언어 간 번역 등 개발자들의 작업을 돕는다. 2025년 5월, Claude Code는 연구 미리보기에서 일반 출시(General Availability)로 전환되었으며, VS Code 및 JetBrains IDE와의 통합, GitHub Actions 지원 기능을 갖추고 있다.
이미지 분석 및 시각 정보 처리: Claude는 이미지를 이해하고 분석하는 능력을 통해 시각 정보를 기반으로 질문에 답하거나 콘텐츠를 생성할 수 있다.
긴 컨텍스트 처리: Claude는 매우 긴 텍스트를 이해하고 요약하며, 복잡한 문서나 대화 기록에서 필요한 정보를 추출하는 데 강점을 보인다. 이는 법률 문서 검토, 연구 논문 분석 등 전문적인 분야에서 특히 유용하다.
이러한 기능들을 바탕으로 Claude는 고객 지원, 교육, 콘텐츠 제작, 소프트웨어 개발 등 다양한 분야에서 활용될 수 있다. 예를 들어, 고객 지원에서는 복잡한 문의에 대한 즉각적인 답변을 제공하여 효율성을 높이고, 교육 분야에서는 개인화된 학습 자료를 생성하거나 학생들의 질문에 답변하는 데 사용될 수 있다.
Model Context Protocol 및 개발자 도구
앤트로픽은 개발자들이 Claude 모델을 활용하여 자체 제품을 구축할 수 있도록 다양한 개발자 도구를 제공한다. 그중 핵심적인 것이 'Model Context Protocol (MCP)'이다. MCP는 AI 시스템이 데이터베이스, 엔터프라이즈 소프트웨어, API 등 다양한 디지털 시스템과 원활하게 통신할 수 있도록 하는 개방형 표준이다. 이는 AI 에이전트가 여러 시스템에 걸쳐 복잡하고 다단계적인 작업을 수행할 수 있도록 지원하며, 각 시스템에 대한 맞춤형 통합 없이도 표준화된 인터페이스를 제공한다.
MCP는 2024년 11월에 출시되었으며, 앤트로픽은 이를 통해 Claude가 엔터프라이즈 AI 배포의 기본 선택지가 되도록 포지셔닝하고 있다. MCP는 모든 개발자가 사용할 수 있도록 개방되어 있지만, Claude에 최적화되어 있어 Claude의 가치를 높이고 API 소비를 유도한다.
이 외에도 앤트로픽은 개발자를 위한 API, 개발자 문서, 가격 정책, 지역 규정 준수 정보 등을 제공하며, 아마존 베드록(Amazon Bedrock) 및 구글 클라우드 버텍스 AI(Google Cloud's Vertex AI)와 같은 주요 클라우드 플랫폼과의 통합을 지원한다. 또한, 앤트로픽 아카데미(Anthropic Academy)를 통해 Claude를 조직에 구현하고 팀 생산성을 극대화하는 방법을 교육하는 등, 개발자 커뮤니티의 성장을 적극적으로 지원하고 있다.
다양한 산업 및 프로젝트에서의 활용
앤트로픽의 AI 모델은 국방, 정보, 교육, 금융 서비스, 헬스케어 등 다양한 산업 분야에서 활용되고 있다.
국방 및 정보: 앤트로픽의 AI는 미국 군사 및 정보 기관의 특정 프로젝트에 활용되고 있다. 이는 복잡한 데이터를 분석하고 의사 결정을 지원하는 데 AI의 능력이 중요하게 작용함을 보여준다.
교육: 교육 분야에서는 개인화된 학습 경험 제공, 질문 답변 시스템 구축, 학습 자료 생성 등에 Claude가 사용될 수 있다.
금융 서비스: 금융 분야에서는 시장 분석, 고객 서비스 자동화, 사기 탐지 등에서 AI의 활용 가능성이 높다.
헬스케어 및 생명 과학: 의료 정보 분석, 진단 보조, 신약 개발 연구 등에서 AI의 잠재력이 크다.
기업 고객 솔루션: 앤트로픽은 'Claude Enterprise' 및 'Workspaces'와 같은 기업용 솔루션을 제공하여 기업 환경에 특화된 AI 관리 경험을 제공한다. 이는 관리자 제어, 사용량 통합, 공유 Claude 액세스 등을 포함하며, 기업이 AI를 광범위하게 배포할 수 있도록 돕는다. 앤트로픽은 기업의 규정 준수 요구 사항을 충족하고, 의사 결정의 투명성을 위한 감사 추적을 제공하며, 유해하거나 편향된 결과의 가능성을 줄이는 등 AI 안전에 대한 근본적인 초점을 통해 기업 시장에서 독특한 이점을 제공한다.
이처럼 앤트로픽은 자사의 AI 기술을 통해 다양한 분야에서 실제 문제를 해결하고 혁신을 이끌어내고 있다.
현재 동향 및 시장에서의 위치
앤트로픽은 급변하는 AI 시장에서 독특한 경쟁력과 전략적 파트너십을 통해 중요한 위치를 차지하고 있다. 특히 AI 안전 및 윤리 분야에서의 선도적인 역할은 그들의 입지를 더욱 공고히 한다.
산업 내 경쟁 구도 및 협력
현재 AI 시장은 OpenAI, Google, Meta 등 거대 기술 기업들이 주도하는 치열한 경쟁 구도를 형성하고 있다. 앤트로픽은 이러한 경쟁 속에서 AI 안전을 최우선 가치로 내세우며 차별화된 입지를 구축하고 있다. 개인 사용자 시장에서는 OpenAI의 ChatGPT가 여전히 지배적이지만, 앤트로픽의 Claude 모델은 기업용 대규모 언어 모델(LLM) 시장에서 32%의 점유율을 차지하며 선두를 달리고 있다.
경쟁과 동시에 협력도 활발하게 이루어지고 있다. 앤트로픽은 아마존 웹 서비스(AWS)를 주요 클라우드 제공업체이자 훈련 파트너로 지정했으며, 아마존 베드록(Amazon Bedrock)을 통해 Claude 모델을 제공한다. 또한 구글 클라우드와도 파트너십을 맺고 구글의 텐서 처리 장치(TPU)에 접근하여 모델 훈련에 활용하고 있다. 2025년 11월에는 엔비디아, 마이크로소프트와도 파트너십을 발표하며 컴퓨팅 자원 확보 및 모델 배포를 위한 광범위한 협력 네트워크를 구축하고 있다. 이러한 클라우드 파트너십은 앤트로픽이 막대한 컴퓨팅 비용을 감당하고 최첨단 AI 모델을 훈련하는 데 필수적인 요소이다.
AI 안전 및 정렬(Alignment)에 대한 기여
앤트로픽은 AI 윤리 및 안전성 연구를 선도하며 정책 수립에 중요한 기여를 하고 있다. 이들은 "안전 우선(safety-first)" 회사로서, 신뢰할 수 있고 안전한 시스템을 구축하는 것이 집단적 책임이라고 믿는다. 앤트로픽은 AI 개발자들이 가장 안전하고 보안이 뛰어난 AI 시스템을 개발하기 위해 경쟁하는 "안전 경쟁(race to the top on safety)"을 촉발하고자 한다.
그들의 연구는 AI 모델의 해석 가능성, 정렬, 사회적 영향 등 광범위한 분야를 다루며, 이러한 연구 결과를 정기적으로 대중과 공유하여 AI 안전 분야의 집단적 지식 발전에 기여하고 있다. 특히 '헌법적 AI'와 같은 독자적인 접근 방식은 AI 시스템이 인간의 가치와 윤리적 원칙에 부합하도록 만드는 구체적인 방법론을 제시하며, AI 거버넌스 및 정책 논의에 중요한 시사점을 제공한다. 앤트로픽은 정책 전문가들과 협력하여 AI의 안전하고 신뢰할 수 있는 개발을 위한 정책 제언을 하고 있으며, OECD 산하 글로벌 AI 파트너십(Global Partnership on AI)의 전문가로 활동하는 등 국제적인 논의에도 적극적으로 참여하고 있다.
시장 성과 및 성장세
앤트로픽은 최근 몇 년간 급격한 성장세를 보이며 AI 시장에서 중요한 플레이어로 부상했다. 2025년 11월 기준으로 앤트로픽의 기업 가치는 3,500억 달러로 추정된다. 2025년 한 해에만 여러 차례의 대규모 자금 조달 라운드를 거쳤는데, 3월에는 615억 달러의 기업 가치로 35억 달러의 시리즈 E 펀딩을 유치했고, 9월에는 1,830억 달러의 기업 가치로 130억 달러의 시리즈 F 펀딩을 완료했다. 2025년 12월 31일에는 코아투(Coatue)와 GIC가 주도하는 100억 달러 규모의 펀딩 라운드에 대한 투자 조건 합의서(term sheet)에 서명하며 3,500억 달러의 기업 가치를 확정했다.
매출 측면에서도 앤트로픽은 괄목할 만한 성장을 기록했다. 다리오 아모데이 CEO에 따르면, 앤트로픽은 2025년에 약 100억 달러의 매출을 올렸다. 이러한 급격한 성장은 Claude 모델의 기업용 시장 점유율 확대와 대규모 투자 유치에 힘입은 결과이다. 앤트로픽은 OpenAI, 구글 등과 함께 AI 개발 경쟁의 선두 그룹에 속하며, 특히 기업용 LLM 시장에서 강력한 경쟁력을 보여주고 있다.
미래 비전과 전망
앤트로픽은 AI 기술의 발전이 인류 사회에 미칠 광범위한 영향을 깊이 인식하며, 기술 혁신과 윤리적 책임을 동시에 추구하는 미래 비전을 제시하고 있다.
AI 기술 발전 방향과 앤트로픽의 역할
앤트로픽은 AI 기술이 에이전트(Agent) 기술의 발전과 모델의 해석 가능성 심화 방향으로 나아갈 것이라고 전망한다. AI 에이전트는 복잡한 다단계 작업을 자율적으로 수행하고, 다양한 시스템과 상호작용하며 목표를 달성하는 능력을 갖춘 AI를 의미한다. 앤트로픽은 Model Context Protocol(MCP)과 같은 기술을 통해 AI 에이전트가 엔터프라이즈 시스템과 원활하게 연결될 수 있는 기반을 마련하고 있으며, 이는 AI 에이전트 경제의 필수 인프라가 될 것으로 보고 있다.
또한, 앤트로픽은 모델의 내부 작동 방식을 이해하는 '해석 가능성' 연구를 더욱 심화하여, AI가 왜 특정 결정을 내리는지 투명하게 밝히고 제어할 수 있는 기술을 개발하는 데 주력할 것이다. 이는 AI 시스템의 신뢰성을 높이고, 예측 불가능한 위험을 줄이는 데 필수적이다. 다리오 아모데이 CEO는 AI 시스템이 프로그래밍 및 AI 연구 자체에 점점 더 많이 배포되면서 자체 가속 개발 루프가 시작될 수 있다고 예측하며, 2026년 또는 2027년까지 여러 전문 분야에서 노벨상 수상자 수준으로 인간이 할 수 있는 모든 것을 수행할 수 있는 모델이 등장할 것이라고 전망했다. 앤트로픽은 이러한 기술 발전의 최전선에서 안전하고 책임감 있는 AI 개발의 모범을 보이며, 인류에게 이로운 AI 기술의 미래를 주도하고자 한다.
사회적 영향 및 윤리적 고려
앤트로픽은 AI가 사회에 미칠 긍정적 및 부정적 영향에 대해 깊이 있는 입장을 가지고 있으며, 윤리적 문제에 대한 논의를 적극적으로 주도한다. 다리오 아모데이 CEO는 AI가 생물학 및 건강, 신경과학 및 정신, 경제 발전 및 빈곤, 평화 및 거버넌스, 일과 의미 등 다섯 가지 주요 영역에서 인류의 삶을 근본적으로 변화시킬 잠재력을 가지고 있다고 본다. 특히 생물학 및 건강 분야에서는 AI가 인간의 삶의 질을 직접적으로 향상시킬 가장 큰 잠재력을 가지고 있다고 강조한다.
그러나 앤트로픽은 AI가 사회에 미칠 잠재적 위험에 대해서도 매우 신중하게 접근한다. 이들은 AI가 인류에게 전례 없는 위험을 초래할 수 있음을 인정하며, 이러한 위험을 이해하고 방어하기 위한 노력이 중요하다고 강조한다. 일자리 변화와 같은 윤리적 문제에 대해서도 논의하며, AI가 업무의 본질을 급진적으로 변화시키고 생산성 향상과 함께 새로운 기술 습득의 필요성을 제기할 것이라고 예측한다. 앤트로픽은 AI가 코드를 작성하는 등 특정 작업을 자동화함으로써 엔지니어들이 더 높은 수준의 사고와 설계에 집중할 수 있게 되지만, 동시에 깊이 있는 기술 숙련도가 저해될 수 있다는 우려도 제기한다. 이러한 사회적, 윤리적 문제에 대한 깊은 성찰은 앤트로픽이 '책임감 있는 AI 개발'이라는 사명을 수행하는 데 중요한 동력이 된다.
장기적인 목표와 도전 과제
앤트로픽의 장기적인 비전은 인류의 장기적인 복지를 위해 AI를 개발하고 유지하는 것이다. 이를 위해 그들은 AI 시스템이 신뢰할 수 있고, 해석 가능하며, 조종 가능하도록 만드는 데 지속적으로 투자할 것이다. 앤트로픽은 AI 안전을 "해결 가능한 문제이지만, 매우 매우 어려운 문제"로 인식하며, 이를 해결하기 위해 수많은 노력과 제도 구축이 필요하다고 본다.
그러나 AI 개발 및 배포 과정에서 직면할 수 있는 잠재적 위험과 도전 과제도 많다. 예를 들어, AI 모델 훈련에 필요한 막대한 컴퓨팅 자원과 비용은 지속적인 자금 조달을 요구한다. 또한, AI 기술의 급속한 발전 속도와 안전성 확보 사이의 균형을 맞추는 것은 항상 어려운 과제이다. 앤트로픽은 "시장에서 최고의 AI 모델을 제때 출시하는 것"과 "안전성 연구를 위해 모델 테스트에 더 많은 시간을 할애하는 것" 사이에 이론적인 긴장이 존재한다고 인정한다.
국가 안보 문제도 중요한 도전 과제이다. 2025년 9월, 앤트로픽은 국가 안보 우려로 인해 중국, 러시아, 이란, 북한 기업에 제품 판매를 중단할 것이라고 발표했다. 또한 2025년 11월에는 중국 정부가 지원하는 해커들이 Claude를 사용하여 약 30개 글로벌 조직에 대한 자동화된 사이버 공격을 수행했다는 사실을 밝히기도 했다. 이러한 문제들은 AI 기술이 가져올 수 있는 복합적인 위험을 보여주며, 앤트로픽이 장기적인 목표를 달성하기 위해 지속적으로 해결해야 할 과제들이다. 그럼에도 불구하고 앤트로픽은 "인류가 번성하는 포스트-AGI(인공 일반 지능) 미래를 위해 최적화"하는 것을 목표로 삼으며, AI 기술이 인류에게 궁극적으로 긍정적인 영향을 미치도록 노력하고 있다.
참고 문헌
Anthropic - Wikipedia. Available at: https://en.wikipedia.org/wiki/Anthropic
Company Anthropic. Available at: https://www.anthropic.com/company
Building Anthropic | A conversation with our co-founders - YouTube. Available at: https://www.youtube.com/watch?v=0h3j2v0j2w4
Home Anthropic. Available at: https://www.anthropic.com/
Report: Anthropic Business Breakdown & Founding Story | Contrary Research. Available at: https://www.contrary.com/research/anthropic-business-breakdown-founding-story
11 Executives Driving Anthropic's Meteoric Rise in the A.I. Boom | Observer. Available at: https://observer.com/2025/11/anthropic-executives-leadership-team-dario-amodei-daniela-amodei-mike-krieger/
What is Anthropic's business model? - Vizologi. Available at: https://vizologi.com/company/anthropic-business-model-canvas/
How Anthropic Designed Itself to Avoid OpenAI's Mistakes - Time Magazine. Available at: https://time.com/6984240/anthropic-openai-governance-ai-safety/
Anthropic's AI Platform Strategy - by Gennaro Cuofano - The Business Engineer. Available at: https://gennarocuofano.substack.com/p/anthropics-ai-platform-strategy
How AI Is Transforming Work at Anthropic. Available at: https://www.anthropic.com/news/how-ai-is-transforming-work-at-anthropic
Machines of Loving Grace - Dario Amodei. Available at: https://darioamodei.com/machines-of-loving-grace
What Is Anthropic? | Built In. Available at: https://builtin.com/articles/what-is-anthropic
Research - Anthropic. Available at: https://www.anthropic.com/research
List of Anthropic Executives & Org Chart - Clay. Available at: https://www.clay.com/blog/anthropic-executives
Anthropic made about $10 billion in 2025 revenue, according to CEO Dario Amodei. Available at: https://www.businessinsider.com/anthropic-ceo-dario-amodei-10-billion-revenue-2025-2026-1
Corporate Structure for Ethical AI - Daniela Amodei (Anthropic) - YouTube. Available at: https://www.youtube.com/watch?v=0h3j2v0j2w4
Anthropic doubles funding target to $20B at $350B valuation | The Tech Buzz. Available at: https://thetechbuzz.substack.com/p/anthropic-doubles-funding-target
Exploring Anthropic's 'Workspaces': A Paradigm Shift in Enterprise AI? - Medium. Available at: https://medium.com/@sana.b.naseem/exploring-anthropics-workspaces-a-paradigm-shift-in-enterprise-ai-f4c0a5a3a70a
Amazon and Anthropic deepen strategic collaboration. Available at: https://www.aboutamazon.com/news/aws/amazon-anthropic-deepen-strategic-collaboration
Inside Google's Investment in Anthropic • The internet giant owns 14% of the high-profile artificial intelligence company, according to legal filings : r/technology - Reddit. Available at: https://www.reddit.com/r/technology/comments/1bcrz37/inside_googles_investment_in_anthropic_the/
Amazon doubles down on AI startup Anthropic with $4bn investment - The Guardian. Available at: https://www.theguardian.com/technology/2024/nov/22/amazon-anthropic-ai-investment
Claude AI Solutions for Business - Anthropic Academy. Available at: https://www.anthropic.com/anthropic-academy/claude-for-work
고객 사례에 따르면, 이 시스템은 매월 650건 이상의 에이전트 생성 풀 리퀘스트를 프로덕션에 병합하며, 복잡한 코드 마이그레이션에서 엔지니어링 시간의 최대 90%를 절감한다.
스포티파이는 AI 기반 개발 체계를 통해 2025년 한 해 동안 스트리밍 앱에 50개 이상의 새로운 기능과 변경사항을 출시했다. 최근 몇 주 동안에만 AI 기반 ‘프롬프트 플레이리스트’, 오디오북용 ‘페이지 매치’, ‘어바웃 디스 송’ 기능을 선보였다. 빌보드에 따르면, 스포티파이는 AI 리믹스 라이선싱에도 관심을 보이며 “헝크” 버그 수정 도구에 대해 경영진들이 적극적으로 논의하고 있다.
앤드로이드어소리티는 “스포티파이 업데이트에 불만이 있다면 누구를 탓해야 할지 짐작해보라”며 AI 기반 개발의 품질 문제도 제기했다. 스포티파이가 12월에 출시된 클로드 오퍼스 4.5 이후 본격적으로 AI 코딩을 도입했다는 점에서, 최신 AI 모델의 코딩 능력이 실제 프로덕션 수준에 도달했음을 보여준다.
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
