CES
CES
목차
1. CES 개요 및 중요성
2. CES의 역사와 발전 과정
3. CES에서 선보이는 핵심 기술 및 트렌드
4. CES의 주요 활용 사례 및 사회적 영향
5. CES의 운영 방식 및 참가 주체
6. 현재 CES의 동향 및 주요 이슈
7. CES의 미래 전망과 도전 과제
1. CES 개요 및 중요성
CES(Consumer Electronics Show)는 매년 1월 미국 라스베이거스에서 개최되는 세계 최대 규모의 가전 및 IT 기술 박람회입니다. 이 행사는 단순한 신제품 전시를 넘어, 글로벌 기술 트렌드를 제시하고 미래 산업의 방향성을 가늠하는 중요한 플랫폼으로 자리매김하고 있습니다.
CES란 무엇인가?
CES는 'Consumer Electronics Show'의 약자로, 우리말로는 '소비자 가전 전시회' 또는 '국제 전자제품 박람회'로 번역됩니다. 이 행사는 미국 소비자기술협회(CTA: Consumer Technology Association)가 주최하며, 매년 1월 초 미국 네바다주 라스베이거스 컨벤션 센터(LVCC)를 중심으로 여러 전시장에서 개최됩니다. 전 세계 수천 개의 기업이 참가하여 최신 기술과 혁신적인 제품을 공개하며, 이는 그 해의 기술 트렌드를 예측하고 방향을 제시하는 중요한 행사로 평가받습니다.
CES의 위상과 영향력
CES는 단순한 제품 전시회를 넘어, 글로벌 기술 커뮤니티가 한데 모여 한 해의 기술 아젠다를 설정하고 미래를 함께 만들어가는 중요한 플랫폼입니다. 이곳에서 발표되는 기술과 제품들은 향후 몇 년간의 기술 트렌드를 예측하게 해주며, 업계 관계자들 간의 네트워킹과 협업의 기회를 제공합니다. 포춘 글로벌 500대 기업 중 다수가 참여하고, 수많은 스타트업이 혁신적인 아이디어를 선보이는 유레카 파크(Eureka Park)는 CES가 단순한 전시를 넘어 실제적인 비즈니스와 투자 유치의 장임을 보여줍니다. 또한, CES는 전 세계 수천 명의 미디어 관계자가 운집하여 최신 기술 동향을 발 빠르게 전하며, 이는 수십만 건의 기사와 수십억 회 이상의 글로벌 미디어 노출로 이어져 CES의 막대한 파급력을 실감케 합니다.
2. CES의 역사와 발전 과정
CES는 1967년 소규모 가전 행사로 시작하여 55년이 지난 현재 가전뿐만 아니라 IT, 모빌리티, 가상현실, 우주 등 미래 신기술을 모두 아우르는 전시회로 성장했습니다.
초기 CES (1960년대 ~ 1980년대)
제1회 CES는 1967년 6월 24일 미국 뉴욕에서 개최되었습니다. 당시 전시회는 '시카고 라디오 쇼'에서 분리된 소규모 가전 행사로, 약 100여 개의 가전 업체와 17,500명의 방문객이 참여했습니다. 초창기 CES는 텔레비전, VCR(비디오카세트 리코더), 가정용 컴퓨터와 같은 당시의 혁신적인 가전제품을 선보이는 데 중점을 두었습니다. 1970년에는 VCR이, 1981년에는 캠코더와 콤팩트디스크(CD) 플레이어가 처음 소개되었습니다. 1978년부터 1994년까지는 매년 1월 라스베이거스에서 동계 CES(WCES)로, 6월에는 시카고에서 하계 CES(SCES)로 두 차례 개최되기도 했습니다. 1989년에는 닌텐도(Nintendo)가 게임보이(Game Boy) 휴대용 콘솔을 공개하며 큰 주목을 받았습니다.
기술 혁신과 성장기 (1990년대 ~ 2000년대)
1990년대에는 디지털 기술의 부상과 함께 CES 전시 품목에 상당한 변화가 있었습니다. PC, 인터넷, 디지털 미디어 등 주요 기술 혁신이 CES에 반영되면서, 이 행사는 기업들이 컴퓨팅, 네트워킹, 통신 분야의 최신 혁신을 선보이는 플랫폼이 되었습니다. 1994년에는 최초의 DVD 플레이어가, 1998년에는 최초의 HDTV가 CES에서 공개되었습니다. 1995년부터는 하계 CES의 인기가 시들해지자, 1998년부터 연초에 라스베이거스에서 한 차례 열리는 행사로 전환되었습니다. 1999년 빌 게이츠는 CES 기조연설에서 디지털 홈의 등장과 컴퓨팅, 엔터테인먼트, 커뮤니케이션의 융합을 예견하기도 했습니다. 2000년대에는 모바일 기술이 소비자 가전 산업의 지배적인 힘으로 등장했으며, 2001년에는 최초의 아이팟(iPod)이 CES에서 출시되었습니다. 2005년 CES에서는 마이크로소프트 회장 빌 게이츠의 기조연설이 있었고, 삼성그룹은 102인치 플라스마 텔레비전을 선보였습니다. 이 시기 CES는 TV, 오디오 및 백색가전 위주의 전시에서 점차 IT 산업 전반의 기술 혁신을 다루는 행사로 인지도를 높여갔습니다.
현대 CES의 변모 (2010년대 이후)
2010년대에 들어서면서 CES는 큰 변혁을 맞이했습니다. 주최 측인 CTA는 급격하게 발달한 ICT(정보통신) 기술과 가전제품의 결합에 대응하여 전시회 자체의 테마를 '제품'에서 '기술'로 변모시키고, 전시회 전체의 대형화 및 국제화를 유도했습니다. 이러한 전략은 스마트폰, IoT(사물 인터넷), AI(인공지능), 모빌리티 등 새로운 기술 패러다임이 CES의 중심이 되면서 폭발적인 성공을 가져왔습니다. 더 이상 가전제품만이 아니라 전기자동차 및 자율주행차 등 미래 자동차, 드론, 인공지능, 로봇 등 ICT 분야의 최신 기술을 보유한 기업 및 기관들이 기술적 성과를 매년 초 공개하는 기술 전시회로 변모했습니다. 이는 CES가 세계 IT 3대 전시회 중 하나로 확고히 자리매김하는 계기가 되었습니다.
3. CES에서 선보이는 핵심 기술 및 트렌드
CES는 매년 인류의 삶을 변화시킬 혁신적인 기술과 제품을 선보이며 미래 기술의 방향성을 제시합니다.
주요 기술 분야 (AI, IoT, 모빌리티, 메타버스 등)
CES에서 매년 중점적으로 다루는 핵심 기술 분야는 다음과 같습니다.
인공지능(AI): AI는 모든 산업을 변화시키는 핵심 기술로, 스마트홈, 모빌리티, 디지털 헬스 등 다양한 분야에 적용됩니다. 온디바이스 AI(On-Device AI)와 생성형 AI(Generative AI)는 물론, 물리적 행동으로 이어지는 '피지컬 AI(Physical AI)'까지 진화하고 있습니다.
사물 인터넷(IoT): AI와 결합된 IoT 기술은 스마트홈 환경에서 가전제품과 기기들을 연결하여 거주자의 생활 패턴을 분석하고 맞춤형 서비스를 제공하는 자동화 환경을 조성합니다.
모빌리티: 자율주행차, 전기차, UAM(도심항공모빌리티), 로봇 등 미래형 교통수단과 스마트 도시의 비전이 제시됩니다. AI 기반 자율주행 보조 시스템과 차량 내 음성 인식, 교통 최적화 기술 등이 발전하고 있습니다.
디지털 헬스: AI, VR(가상현실)과 디지털 헬스 기술의 융합은 헬스케어의 새로운 패러다임을 선보입니다. 진단 정확도를 높이고, 맞춤형 치료를 가능하게 하며, 헬스케어 접근성을 개선하는 데 기여합니다. 웨어러블 기기 등 센싱 데이터를 기반으로 한 AI 디지털 케어가 주목받습니다.
로보틱스: AI와 만나 더욱 진보하는 로보틱스는 물류창고나 공장을 넘어 서비스업, 가정, 농업 등 다양한 분야로 확산되고 있습니다. 인간의 한계를 보완하는 협력자로 자리 잡으며 산업 자동화 수준을 높이고 있습니다.
메타버스 및 XR(확장현실): AR(증강현실) 글래스와 MR(혼합현실) 헤드셋이 더욱 가볍고 선명해지면서 메타버스 콘텐츠가 한층 실감 나는 형태로 발전하고 있습니다. 게임, 교육, 원격 협업 등 응용 분야가 늘어나며 XR 생태계 확장이 본격화되는 추세입니다.
지속 가능성(Sustainability): 기후 변화 대응과 지속 가능성을 위한 ESG(환경·사회·지배구조) 기술이 강조되며, 탄소 배출 절감, 재생 에너지 활용, 순환 경제 모델 도입 등 환경 지속 가능성을 높이는 다양한 기술이 선보여집니다.
양자 컴퓨팅: AI 이후의 차세대 핵심 기술로 주목받으며, 기존 슈퍼컴퓨터가 해결하기 어려운 복잡한 문제를 단시간 내에 처리할 수 있는 잠재력을 보여줍니다.
혁신상(Innovation Awards)을 통해 본 기술 동향
CES 혁신상은 미국 소비자기술협회(CTA)가 매년 출품작 중 혁신성, 디자인, 기술력 등을 종합적으로 평가하여 수여하는 세계적 권위의 상입니다. 이 상은 해당 연도의 가장 혁신적인 기술 트렌드와 미래 유망 기술을 조명하는 중요한 지표가 됩니다. 예를 들어, CES 2026 혁신상 수상 성과는 TV, 모바일 같은 익숙한 제품뿐 아니라 AI 반도체, 디지털 헬스, 로봇, XR까지 무대가 넓어졌음을 보여주며, 한국 기업들의 존재감도 커졌습니다. 현대자동차는 CES 2026에서 차세대 자율주행 모빌리티 로봇 플랫폼 '모베드(MobED)'로 로보틱스 부문 최고혁신상(Best of Innovation Awards)을 수상하며 기술력을 인정받았습니다. 이는 혁신상 수상 제품 및 기술이 단순한 전시를 넘어 곧바로 생활 속 경험과 연결되는 흐름임을 말해줍니다.
4. CES의 주요 활용 사례 및 사회적 영향
CES는 수많은 혁신적인 제품과 기술을 대중에게 처음 소개하며 우리 삶과 산업 전반에 지대한 영향을 미쳐왔습니다.
소비자 기술 혁신을 이끈 제품들
CES는 수십 년간 수많은 소비자 가전 혁신을 이끌어왔습니다. 1970년 비디오카세트 리코더(VCR), 1981년 캠코더 및 콤팩트디스크(CD) 플레이어, 1994년 DVD 플레이어, 1998년 HDTV, 2001년 아이팟(iPod) 등이 CES를 통해 대중에게 처음 소개되거나 큰 반향을 일으켰던 대표적인 제품들입니다. 이 외에도 컴퓨터 마우스(1968년), 닌텐도 게임보이(1989년), 포켓 PC(2000년) 등 현대 생활을 혁신적으로 변화시킨 기술들이 CES를 통해 세상에 데뷔했습니다. 이러한 제품들은 단순한 기술적 진보를 넘어, 사람들의 여가 활동, 정보 소비 방식, 생활 편의성 등을 근본적으로 변화시키는 계기가 되었습니다.
산업 전반에 미치는 파급 효과
CES는 단순한 가전 전시를 넘어 다양한 산업 분야의 기술 혁신과 비즈니스 기회 창출에 기여합니다.
자동차 산업: 자율주행차, 전기차, UAM 등 미래 모빌리티 기술이 CES의 주요 전시 품목으로 자리 잡으면서, 자동차 산업은 IT 기술과의 융합을 가속화하고 있습니다. 현대자동차와 같은 글로벌 자동차 기업들은 CES를 통해 혁신적인 모빌리티 비전을 제시하고 있습니다.
헬스케어 산업: 디지털 헬스케어 기술은 AI 기반 진단 기기, 웨어러블 디바이스, 원격 의료 서비스 등을 통해 개인 맞춤형 건강 관리의 새 시대를 열고 있습니다. CES는 이러한 기술들이 의료 산업에 어떻게 적용될 수 있는지 보여주는 중요한 장입니다.
스마트시티 및 스마트홈: AI와 IoT 기술을 기반으로 한 스마트홈 솔루션은 가전제품과 IoT 기기를 연결하여 거주자의 생활 패턴을 분석하고 최적의 주거 환경을 제공합니다. 스마트시티는 모빌리티, 에너지, 환경 기술 등이 통합되어 도시 인프라를 혁신하는 방향으로 발전하고 있습니다.
제조업 및 로보틱스: 산업용 로봇과 협동 로봇(Cobot)의 발전은 제조 및 물류 자동화를 가속화하며, 인간의 노동 부담을 줄이고 생산 효율성을 높이는 데 기여합니다.
CES는 이러한 기술들이 실제 비즈니스 환경에서 어떻게 활용될 수 있는지, 그리고 새로운 시장을 어떻게 창출할 수 있는지를 보여주는 중요한 기회를 제공합니다.
5. CES의 운영 방식 및 참가 주체
CES는 방대한 규모와 복잡한 구성으로 이루어져 있으며, 전 세계 다양한 주체들이 참여하여 기술 혁신의 장을 만듭니다.
CES의 구성 및 일정
CES는 일반적으로 1월 초에 4일간 진행됩니다. 주요 행사는 라스베이거스 컨벤션 센터(LVCC)를 포함한 테크 이스트(Tech East), 테크 웨스트(Tech West), 테크 사우스(Tech South) 등 여러 대규모 전시 구역에서 펼쳐집니다.
전시 구역: 각 구역은 특정 기술 분야나 참가 기업의 규모에 따라 나뉘어 전시됩니다. 예를 들어, 스타트업 중심의 '유레카 파크(Eureka Park)'는 혁신적인 아이디어를 선보이는 장으로 유명합니다.
기조연설(Keynotes): 글로벌 기술 리더들이 무대에 올라 한 해의 기술 트렌드와 미래 비전을 제시하는 핵심 세션입니다. 엔비디아(NVIDIA)의 젠슨 황(Jensen Huang) CEO, AMD의 리사 수(Lisa Su) CEO, 지멘스(Siemens)의 롤란드 부시(Roland Busch) CEO 등이 최근 CES에서 기조연설을 진행했습니다.
컨퍼런스 세션: AI, 디지털 헬스, 모빌리티, 지속 가능성 등 다양한 주제에 대한 심도 있는 논의와 기술 발표가 이루어지는 전문 세션입니다.
미디어 데이(Media Day): 공식 개막에 앞서 주요 기업들이 신제품 발표와 파트너십을 공개하며 미디어의 관심을 집중시키는 행사입니다.
CES는 이러한 다채로운 구성으로 전 세계 참가자들에게 기술 트렌드를 공유하고 교류할 수 있는 기회를 제공합니다.
주요 참가 기업 및 방문객
CES에는 전 세계 150개국 이상에서 4,300개 이상의 기업이 참가하며, 참관객 수는 13만 5천 명을 넘어서는 등 팬데믹 이전 수준을 회복하고 있습니다.
글로벌 대기업: 삼성전자, LG전자, 현대자동차, SK그룹, 엔비디아, 구글, 아마존, 마이크로소프트 등 각 산업을 대표하는 글로벌 기업들이 대규모 부스를 마련하여 최신 기술과 혁신 제품을 선보입니다. 이들은 AI, 모빌리티, 스마트홈 등 핵심 분야에서 기술 리더십을 과시합니다.
스타트업: 유레카 파크를 중심으로 전 세계 수많은 스타트업이 참여하여 혁신적인 아이디어와 기술을 선보이고 투자 유치의 기회를 모색합니다. CES 2024에는 전체 스타트업 1,200개 사 중 42%에 달하는 512개 스타트업이 한국 스타트업이었을 정도로 한국 스타트업의 참여가 활발합니다.
방문객: 기술 전문가, 엔지니어, 비즈니스 리더, 투자자, 미디어 관계자, 그리고 최신 기술을 직접 체험하고자 하는 일반 소비자 등 다양한 배경을 가진 사람들이 CES를 방문합니다. 이들은 새로운 비즈니스 기회를 창출하고, 기술 트렌드를 파악하며, 미래 기술을 미리 경험하는 것을 목표로 합니다.
CES는 이러한 다양한 참가 주체들이 모여 기술 혁신을 논하고 협력하는 글로벌 기술 생태계의 중요한 허브 역할을 수행합니다.
6. 현재 CES의 동향 및 주요 이슈
최근 CES는 AI 기술의 급부상과 팬데믹 이후의 변화에 집중하며 기술 산업의 핵심 화두를 제시하고 있습니다.
최신 CES (예: 2024년, 2025년) 주요 트렌드
최근 CES는 'AI Everywhere'를 핵심 키워드로 내세우며 인공지능이 모든 산업과 일상에 깊숙이 침투하고 있음을 보여줍니다.
CES 2024: AI와 로보틱스, 모빌리티, 메타버스·웹 3.0, 스마트홈, 디지털 헬스케어, ESG, 스페이스 테크, 푸드테크 등이 주요 트렌드로 부상했습니다. 특히 AI를 실생활 및 기존 산업에 접목시키는 시도가 각광받았고, 단순한 AI가 아닌 기기 안으로 들어온 온디바이스 AI가 주목받았습니다. 유통 기업 월마트, 뷰티 기업 로레알, 자동차 제조기업 현대 그룹 등 비IT 기업들도 AI와 기존 산업 및 소비 생활의 연결을 강조하는 부스를 운영했습니다.
CES 2025: 'AI Everywhere'를 핵심 키워드로, AI, 지속 가능성, 디지털 헬스, 양자 컴퓨팅, 모빌리티 등 다양한 기술이 주목받았습니다. AI는 스마트홈, 모빌리티, 디지털 헬스 등 다양한 산업에서 핵심 기술로 자리 잡았으며, 특히 스마트홈은 AI가 가장 빠르게 적용되는 영역 중 하나로 혁신적인 AI 기반 솔루션이 대거 선보였습니다. 양자 컴퓨팅은 올해 처음으로 추가된 항목이자 주요 키워드 중 하나로, AI 열풍을 이어갈 다음 주자로 주목받았습니다.
CES 2026: AI 기술의 '상용화'와 '일상 침투' 수준을 가늠하는 무대가 될 것이라는 관측이 나옵니다. 단순한 기술 시연을 넘어 실제 제품과 서비스에 어떻게 적용되고, 안정성과 효율성을 어떻게 확보했는지가 주요 관전 포인트로 떠오를 전망입니다. '피지컬 AI'가 로봇, 모빌리티, 가전을 관통하는 새로운 경쟁의 기준으로 제시될 것으로 예상됩니다.
이처럼 CES는 매년 기술 트렌드의 진화를 반영하며, 특히 AI 기술의 발전과 적용 범위 확대를 중점적으로 다루고 있습니다.
팬데믹 이후 CES의 변화
코로나19 팬데믹은 CES 운영 방식에 큰 변화를 가져왔습니다. 2021년에는 전면 온라인으로 개최되었으며, 2022년에는 규모가 축소된 채 온오프라인 하이브리드 형식으로 진행되었습니다. 팬데믹 이후 CES는 대면 행사의 중요성을 다시금 확인하며, 참가국 및 기업 수가 팬데믹 이전 수준을 회복하고 있습니다. 하지만 동시에 온라인 플랫폼을 활용한 접근성 확대와 하이브리드 전시 모델에 대한 논의도 지속되고 있습니다. 이러한 변화는 CES가 급변하는 환경 속에서도 기술 혁신의 장으로서의 역할을 유지하기 위한 노력을 보여줍니다.
7. CES의 미래 전망과 도전 과제
CES는 미래 기술 혁신의 방향성을 제시하고 있지만, 동시에 급변하는 기술 환경 속에서 새로운 도전 과제에 직면하고 있습니다.
미래 기술 혁신의 방향성
CES를 통해 엿볼 수 있는 인류의 미래 삶과 기술 발전의 큰 그림은 다음과 같습니다.
AI의 일상화 및 대중화: AI는 더 이상 특정 전문가의 영역이 아닌, 우리 삶의 모든 영역에 스며들어 개인의 삶을 풍요롭게 하고 산업의 효율성을 극대화하는 핵심 동력이 될 것입니다. 온디바이스 AI, AI 에이전트, 피지컬 AI 등 다양한 형태의 AI가 실생활에 적용될 것입니다.
초연결 사회와 스마트 경험: IoT, 5G, AI 등의 기술 융합은 기기와 사람, 그리고 환경이 끊김 없이 연결되는 초연결 사회를 구현할 것입니다. 스마트홈, 스마트시티, 커넥티드 모빌리티 등은 개인에게 최적화된 맞춤형 경험을 제공하며 삶의 질을 향상시킬 것입니다.
지속 가능한 기술: 기후 변화와 환경 문제 해결을 위한 지속 가능한 기술의 중요성은 더욱 커질 것입니다. 재생 에너지, 탄소 중립 기술, 순환 경제 모델 등 ESG 가치를 반영한 기술 혁신이 가속화될 것으로 예상됩니다.
디지털 헬스 혁명: AI 기반의 정밀 의료, 예방 의학, 개인 맞춤형 건강 관리 솔루션은 인간의 수명과 웰빙을 증진시키는 데 크게 기여할 것입니다. 웨어러블 기기와 체내 센서 기술의 발전은 건강 관리를 더욱 개인화하고 지능화할 것입니다.
CES는 이러한 기술들이 인류가 직면한 문제를 해결하고 더 나은 미래를 만들어가는 데 어떻게 기여할 수 있는지에 대한 비전을 제시합니다.
CES가 나아가야 할 길
급변하는 기술 환경 속에서 CES가 계속해서 영향력을 유지하고 발전하기 위해서는 다음과 같은 도전 과제를 해결하고 혁신을 추구해야 합니다.
기술의 실용성과 상용화 강조: 단순한 기술 시연을 넘어 실제 제품과 서비스에 어떻게 적용되고, 사용자에게 어떤 가치를 제공하는지 보여주는 것이 중요합니다. '혁신은 시장에서 증명된다'는 흐름에 맞춰 상용화 가능성이 높은 기술들을 중심으로 전시를 구성해야 합니다.
다양한 산업 분야와의 융합 심화: 전통적인 가전의 경계를 넘어 자동차, 헬스케어, 건설, 푸드테크, 뷰티테크 등 더욱 다양한 산업 분야의 참여를 유도하고, 이들 간의 융합 시너지를 창출하는 플랫폼 역할을 강화해야 합니다.
글로벌 문제 해결에 기여: 기후 변화, 에너지 위기, 건강 불평등 등 인류가 직면한 글로벌 과제 해결에 기술이 어떻게 기여할 수 있는지에 대한 논의와 솔루션 제시를 더욱 확대해야 합니다.
스타트업 생태계 지원 강화: 혁신적인 아이디어를 가진 스타트업들이 투자자와 파트너를 만나고 성장할 수 있는 기회를 지속적으로 제공하며, 글로벌 기술 생태계의 활력을 불어넣어야 합니다.
참관객 경험의 지속적인 혁신: 온오프라인을 아우르는 하이브리드 전시 모델을 더욱 고도화하고, 참관객들이 기술을 더욱 몰입감 있게 체험하고 교류할 수 있는 새로운 방식을 끊임없이 모색해야 합니다.
CES는 이러한 변화와 혁신을 통해 미래 기술 발전의 이정표이자 글로벌 기술 협력의 중심지로서 그 위상을 더욱 공고히 할 것입니다.
참고 문헌
삼성SDS 디지털 마케터의 눈으로 본 CES 2025 트렌드! (2025-01-21)
CES 2024 주요 트렌드 9개 알아보기 - 사례뉴스 (2024-01-09)
기업이 반드시 알아야 할 CES 2025 핵심 기술 트렌드 - SK AX (2025-02-07)
[제조백과] 제조업 전시의 꽃, CES 알아보기 - 바로발주 (2024-05-30)
〈CES 2025〉에서 주목할 다섯 가지 키워드는? | Design+ (2025-01-07)
변화의 물결 속으로! CES 2025 트렌드 - SK텔레콤 뉴스룸 (2025-01-13)
CES는 글로벌 IT 혁신 트렌드와 미래 기술 미리 볼 수 있는 기회입니다. (2025-05-22)
“CES 2025” 10대 키워드로 보는 기술 트렌드 - 요즘IT (2025-01-16)
[CES 2024 트렌드 총정리] 'CES 2024'를 관통한 핵심 키워드는? | SK ecoplant Newsroom (2024-01-18)
CES 2024, 주목해야 할 6대 트렌드 - 브런치 (2024-01-10)
[CES2023] 메타버스·AI·스마트모빌리티 등 총출동…증시 달굴 테마는? - Daum (2023-01-05)
모든 산업은 AI로 탈바꿈한다, CES 2024 - 테크 포커스 (2024-02-05)
알아두면 좋은 CES의 변천사 - CES 전문 지오엑스포 (2024-01-02)
CES (무역 박람회) - 위키백과, 우리 모두의 백과사전 (2025-12-20)
CES 2025, 미래를 향한 신기술과 혁신 트렌드 총정리 (2025-03-05)
CES 2026, AI·헬스·로봇·모빌리티·펫테크 전 분야가 '실제 적용' 중심으로 이동 (2025-12-10)
[미리 보는 CES 2026] 삼성·SK·LG 등 '코리아 초격차 AI' 위상 과시 - 에너지경제신문 (2026-01-04)
[CES 2023 디브리핑] 모빌리티∙AI∙메타버스… CES 2023 주요 키워드 정리 - SK텔레콤 뉴스룸 (2023-01-26)
CES 2026 혁신상 수상 성과 - 판다랭크 (2025-11-06)
CES 2025 행사 일정 및 참여기업, 주목할만한 기술은?? (2025-01-07)
CES로 보는 2024년 주요 산업 트렌드 - 한국무역협회 (2024-01-17)
CES - 나무위키 (2025-12-20)
CES 역사 및 개요 - 더밀크 | The Miilk (2024-01-08)
라스베가스 가전제품 박람회 CES 2026 - 국제박람회여행사 (2025-12-01)
CES2024 총정리!! 생성AI, 모빌리티, 스마트홈, 헬스케어, 메타버스… - YouTube (2024-01-13)
현대자동차 모베드, CES 2026 로보틱스 부문 최고혁신상 수상 - 뉴스와이어 (2026-01-05)
1967년 소규모 가전 전시회로 출발한 美CES…미래기술 총집합 - 연합뉴스 (2022-01-02)
[비즈한국×현대자동차] 현대차 모베드, CES 2026 로보틱스 부문 최고혁신상 수상 (2026-01-06)
[CES 2026] AI 기술방향 총망라…삼성·현대차 등 출격 - 디지털타임스 (2026-01-04)
CES 2026이 다시 주목한 디스플레이 글라스: 보이지 않지만 가장 중요한 1mm (2026-01-06)
CES Keynote 2025, 기조 연설 편 -엔비디아(NVIDIA)젠슨황 등! - CES 전문 지오엑스포 (2025-01-05)
"모빌리티·디지털헬스, 그리고 "…CES 2025 휩쓴 '이 기술' - 유니콘팩토리 (2025-01-06)
CES 2025 총결산 - 브런치 (2025-01-13)
[전시안내] CES 2026 (Consumer Electronics Show) - 메세플래닝 (2025-12-01)
'CES 2026' 개막...LG전자, 현대, 두산밥캣 등 신제품 발표 - 투데이에너지 (2026-01-07)
Conference Program - CES (2025-12-01)
[고삼석 칼럼] CES 2025 결산, 첨단 기술이 만들 우리의 미래 - 지디넷코리아 (2025-01-13)
글로벌 전시 플랫폼 - 한국무역협회 (2024-01-01)
CES 2026 프리뷰: 미리 보는 CES 트렌드 (2025-12-05)
CES 2025에서 주목할 5대 산업분야 (2025-01-01)
CES 2025로 살펴본 글로벌 기술 트렌드: 더 가까워진 AX and more - 한국무역협회 (2025-01-17)
[카드뉴스] 피지컬 AI, '새로운 전략'이 되다.. 로봇·모빌리티·가전을 관통하는 새로운 경쟁의 기준 (2026-01-06)
AI 기술패권 각축장 CES 2026… 사상 최대 '통합한국관' 운영 - 기계신문 (2026-01-02)
한서대, 국내대학 최초 CES 혁신상 7년 연속 수상…총 28개 혁신상 쾌거 - 한국대학신문 (2026-01-06)
CES 2025 전시 일정 안내! 세계에서 가장 영향력 있는 국제적인 행사! (2025-01-07)
2026에서 인텔이 휴대용 게임 기기를 위한 전용 플랫폼을 발표하며 게임 시장에 본격적으로 진입한다는 깜짝 계획을 밝혔다.
현재 휴대용 게임 기기 시장의 주인은 사실상 AMD였다. 하지만 인텔이 도전장을 내밀면서 시장 분위기가 후끈 달아오르고 있다. 인텔은 단순히 부품만 파는 게 아니라, 기계(하드웨어)와 프로그램(소프트웨어)을 합친 통합 세트를 제공해 개발자와 제조사들을 끌어들일 계획이다. 이로써 AMD가 주도하고 있는 시장에 새로운 경쟁 구도를 형성할 것으로 예상된다.
이어서 인텔은 새로운 제조 방법인 ’18A 공정’으로 만든 ‘팬서 레이크(Panther Lake)’ 칩과 ‘코어 울트라 시리즈 3’ 프로세서를 공개했다. ‘리본펫(RibbonFET) 트랜지스터
트랜지스터
트랜지스터의 동작 원리부터 최신 기술까지: 현대 전자공학의 심장
목차
트랜지스터란?
정의 및 기본 개념
역사: 벨 전화 연구소와 실리콘 대체
트랜지스터의 종류
BJT와 FET 차이
NPN 및 PNP 트랜지스터
동작 원리
증폭과 스위치로서의 작용
BJT의 증폭 작용 및 신호 왜곡
전계 효과 트랜지스터(FET)의 동작
증폭기 및 스위치로서의 역할
Class A 증폭기와 바이어스 회로
전압 분배 바이어스와 컬렉터 귀환 바이어스
응용 분야
디지털 회로에서의 2진법 활용
RAM 및 기타 반도체 메모리 응용
기술적 요소 및 최신 발전
핀 전계 효과 트랜지스터(FinFET)
게이트 올 어라운드(GAA) 기술 및 BSPDN
결론
트랜지스터가 전자공학에 미친 영향
앞으로의 기술 발전 방향
1. 트랜지스터란?
현대 전자 기기의 심장이라고 불리는 트랜지스터는 인류의 삶을 혁신적으로 변화시킨 가장 중요한 발명품 중 하나이다. 손안의 스마트폰부터 거대한 데이터 센터에 이르기까지, 트랜지스터 없이는 오늘날의 디지털 세상을 상상하기 어렵다.
정의 및 기본 개념
트랜지스터(Transistor)는 'Transfer(전송하다)'와 'Resistor(저항 소자)'의 합성어로, 전기적 신호를 증폭하거나 스위칭하는 기능을 가진 반도체 소자를 의미한다. 쉽게 말해, 작은 전기 신호로 더 큰 전기 신호의 흐름을 제어하는 '전기 스위치' 또는 '전기 밸브'와 같은 역할을 한다.
트랜지스터는 일반적으로 세 개 이상의 전극(단자)을 가지고 있다. 이 단자 중 하나에 가해지는 작은 전압이나 전류 변화가 다른 두 단자 사이의 큰 전류 흐름을 제어하는 방식으로 작동한다. 이러한 제어 능력 덕분에 트랜지스터는 아날로그 신호를 증폭하거나 디지털 신호를 켜고 끄는 스위치 역할을 수행하며, 이는 모든 전자 회로의 기본 구성 요소가 된다.
역사: 벨 전화 연구소와 실리콘 대체
트랜지스터의 역사는 1947년 12월 16일, 미국 뉴저지의 벨 전화 연구소(Bell Telephone Laboratories)에서 시작되었다. 당시 존 바딘(John Bardeen), 월터 브래튼(Walter Brattain), 윌리엄 쇼클리(William Shockley) 세 명의 과학자는 기존 진공관의 단점(큰 부피, 높은 전력 소모, 잦은 고장)을 극복할 새로운 고체 소자를 연구하고 있었다.
이들은 게르마늄(Germanium) 반도체를 이용해 전기 신호를 증폭하는 '점접촉 트랜지스터'를 세계 최초로 발명하는 데 성공했다. 이 공로로 세 명의 과학자는 1956년 노벨 물리학상을 공동 수상했다. 초기 트랜지스터는 게르마늄 기반이었으나, 이후 실리콘(Silicon)이 더 안정적이고 고온 특성이 우수하다는 장점 때문에 주된 반도체 재료로 대체되었다. 이 실리콘 기반 트랜지스터의 발전은 오늘날 '실리콘 밸리'의 탄생을 이끌었다.
2. 트랜지스터의 종류
트랜지스터는 크게 바이폴라 접합 트랜지스터(BJT)와 전계 효과 트랜지스터(FET)의 두 가지 주요 유형으로 나눌 수 있다. 이들은 동작 방식과 특성에서 중요한 차이를 보인다.
BJT와 FET 차이
BJT (Bipolar Junction Transistor): BJT는 '양극성 접합 트랜지스터'라고도 불리며, 전류 제어 소자이다. 베이스(Base) 단자에 흐르는 작은 전류(베이스 전류)로 컬렉터(Collector)와 이미터(Emitter) 사이의 큰 전류(컬렉터 전류)를 제어한다. 즉, 전자의 흐름과 정공의 흐름, 두 가지 종류의 전하 운반자(양극성)가 모두 전류 흐름에 관여한다. BJT는 일반적으로 고속 스위칭과 높은 전류 구동 능력에 강점을 보인다.
FET (Field-Effect Transistor): FET는 '전계 효과 트랜지스터'라고 불리며, 전압 제어 소자이다. 게이트(Gate) 단자에 가해지는 전압(게이트 전압)으로 소스(Source)와 드레인(Drain) 사이의 채널(Channel)을 형성하고, 이 채널의 전도도를 조절하여 전류 흐름을 제어한다. BJT와 달리 전자의 흐름 또는 정공의 흐름 중 한 가지 종류의 전하 운반자(단극성)만 전류 흐름에 관여한다. FET는 높은 입력 임피던스와 낮은 전력 소비가 특징이며, 특히 고주파 회로와 디지털 회로에서 널리 사용된다. MOSFET(Metal-Oxide-Semiconductor FET)은 FET의 가장 일반적인 형태 중 하나이다.
특징
BJT (Bipolar Junction Transistor)
FET (Field-Effect Transistor)
제어 방식
전류 제어 (베이스 전류)
전압 제어 (게이트 전압)
전하 운반자
전자와 정공 모두 (양극성)
전자 또는 정공 중 하나 (단극성)
단자 명칭
베이스(B), 컬렉터(C), 이미터(E)
게이트(G), 드레인(D), 소스(S)
장점
고속 스위칭, 높은 전류 구동
높은 입력 임피던스, 낮은 전력 소비
주요 응용
아날로그 증폭, 전력 스위칭
디지털 회로, 고주파 회로
NPN 및 PNP 트랜지스터 (BJT 중심)
BJT는 반도체 층의 구성에 따라 NPN형과 PNP형으로 다시 분류된다.
NPN 트랜지스터: p형 반도체 층(베이스)이 두 개의 n형 반도체 층(컬렉터, 이미터) 사이에 끼워진 구조이다. 베이스에 양(+)의 전압을 가해 베이스 전류를 흘리면, 이미터에서 컬렉터로 전자가 이동하여 전류가 흐르게 된다. 이때 전하 운반자는 주로 전자이다.
PNP 트랜지스터: n형 반도체 층(베이스)이 두 개의 p형 반도체 층(컬렉터, 이미터) 사이에 끼워진 구조이다. 베이스에 음(-)의 전압을 가해 베이스 전류를 흘리면, 이미터에서 컬렉터로 정공이 이동하여 전류가 흐르게 된다. 이때 전하 운반자는 주로 정공이다.
NPN과 PNP 트랜지스터는 전류 흐름 방향과 전압 인가 방식에서 서로 반대되는 특성을 가지며, 회로 설계 시 부하의 위치나 제어 신호의 극성에 따라 적절히 선택하여 사용된다.
3. 동작 원리
트랜지스터의 핵심적인 기능은 크게 두 가지로, 바로 '증폭'과 '스위칭'이다. 이 두 가지 작용은 현대 전자공학의 근간을 이룬다.
증폭과 스위치로서의 작용
증폭 (Amplification): 트랜지스터는 작은 입력 신호를 받아 더 큰 출력 신호로 변환하는 능력을 가지고 있다. 예를 들어, 마이크에서 들어오는 미세한 음성 신호를 트랜지스터를 통해 수백, 수천 배로 증폭하여 스피커에서 큰 소리가 나게 하는 것이 대표적인 증폭 작용이다. 이는 트랜지스터가 입력 신호에 따라 내부 저항을 조절하여 출력 전류를 제어하기 때문에 가능하다.
스위칭 (Switching): 트랜지스터는 전류의 흐름을 켜거나 끄는 '스위치' 역할도 수행한다. 입력 신호의 유무에 따라 트랜지스터를 완전히 ON(도통) 또는 OFF(차단) 상태로 만들어 전류를 통과시키거나 차단하는 것이다. 이 스위칭 작용은 디지털 회로에서 0과 1의 이진법 논리를 구현하는 데 필수적이다.
BJT의 증폭 작용 및 신호 왜곡
NPN형 BJT를 예로 들면, 이미터-베이스 접합에 순방향 바이어스(양의 전압)를, 베이스-컬렉터 접합에 역방향 바이어스(음의 전압)를 인가하여 '활성 영역(Active Region)'이라는 특정 동작점에서 작동시킨다. 베이스에 인가되는 작은 교류 신호는 베이스 전류의 변화를 유발하고, 이 작은 베이스 전류 변화는 트랜지스터의 전류 증폭률(hFE 또는 β)에 비례하여 컬렉터 전류에 큰 변화를 일으킨다. 이 컬렉터 전류 변화가 저항을 통해 전압 변화로 나타나면, 입력 신호보다 훨씬 큰 증폭된 출력 신호를 얻을 수 있다.
그러나 BJT의 증폭 작용은 트랜지스터의 비선형적 특성 때문에 신호 왜곡(Distortion)이 발생할 수 있다. 입력 신호의 전체 파형이 출력에 그대로 나타나지 않고 일부가 잘리거나 변형되는 현상이다. 이를 방지하기 위해 트랜지스터의 동작점을 적절히 설정하는 '바이어스(Bias)' 회로가 중요하게 사용된다.
전계 효과 트랜지스터(FET)의 동작
MOSFET(Metal-Oxide-Semiconductor FET)을 중심으로 설명하면, 게이트, 소스, 드레인 세 단자로 구성된다. 게이트와 채널 사이에는 얇은 산화막이 있어 게이트 전압이 직접 전류를 흐르게 하는 것이 아니라, 전기장을 형성하여 채널의 전도도를 조절한다.
N-채널 MOSFET의 경우, 게이트에 양(+)의 전압을 가하면 게이트 아래의 반도체(P형 기판)에 전자들이 모여들어 소스와 드레인 사이에 전자가 이동할 수 있는 '채널'이 형성된다. 게이트 전압이 높아질수록 채널의 폭이 넓어져 소스에서 드레인으로 흐르는 전류가 증가하고, 게이트 전압이 낮아지면 채널이 좁아져 전류가 감소한다. 게이트 전압이 문턱 전압(Threshold Voltage) 이하로 내려가면 채널이 완전히 닫혀 전류가 흐르지 않게 된다. 이처럼 게이트 전압으로 채널의 전도도를 제어하여 전류 흐름을 조절하는 것이 FET의 기본 동작 원리이다.
4. 증폭기 및 스위치로서의 역할
트랜지스터는 다양한 회로에서 증폭기 또는 스위치로 활용되며, 이 역할을 효율적으로 수행하기 위해서는 적절한 동작 환경을 설정하는 것이 중요하다.
Class A 증폭기와 바이어스 회로
증폭기로서 트랜지스터를 사용할 때, 입력 신호가 없을 때도 항상 트랜지스터가 활성 영역에 있도록 동작점을 설정하는 것이 일반적이다. 이처럼 트랜지스터가 입력 신호의 전체 주기에 걸쳐 항상 도통 상태를 유지하도록 바이어스된 증폭기를 'Class A 증폭기'라고 한다. Class A 증폭기는 선형성이 우수하여 신호 왜곡이 적다는 장점이 있지만, 항상 전류가 흐르기 때문에 전력 효율이 낮다는 단점이 있다.
바이어스 회로(Bias Circuit)는 트랜지스터의 안정적인 동작점을 설정하기 위해 필수적이다. 입력 신호가 인가되기 전, 트랜지스터의 각 단자에 적절한 직류(DC) 전압과 전류를 공급하여 트랜지스터가 원하는 특성(예: 활성 영역)에서 작동하도록 하는 것이다. 바이어스가 제대로 설정되지 않으면 신호 왜곡이 발생하거나 트랜지스터가 제대로 작동하지 않을 수 있다.
전압 분배 바이어스와 컬렉터 귀환 바이어스
다양한 바이어스 회로 중 가장 널리 사용되는 두 가지 방식은 다음과 같다.
전압 분배 바이어스 (Voltage Divider Bias): 이미터 접지 회로에서 가장 흔히 사용되는 바이어스 방식이다. 베이스 단자에 두 개의 저항으로 구성된 전압 분배기를 연결하여 안정적인 베이스 전압을 제공한다. 이 방식은 온도 변화나 트랜지스터의 파라미터 변화에도 비교적 안정적인 동작점을 유지할 수 있어 실용성이 높다.
컬렉터 귀환 바이어스 (Collector Feedback Bias): 컬렉터 단자의 전압을 베이스 바이어스 저항으로 되돌려 베이스 전류를 조절하는 방식이다. 컬렉터 전류가 증가하여 컬렉터 전압이 감소하면, 베이스 전류도 함께 감소하여 컬렉터 전류 증가를 억제하는 부궤환(Negative Feedback) 효과를 통해 동작점의 안정성을 높인다. 전압 분배 바이어스보다 적은 수의 부품으로 구성할 수 있다는 장점이 있다.
이러한 바이어스 회로들은 트랜지스터가 의도한 대로 정확하고 안정적으로 증폭 또는 스위칭 기능을 수행하도록 돕는다.
5. 응용 분야
트랜지스터의 스위칭 및 증폭 기능은 현대 전자 기술의 거의 모든 분야에 적용되며, 특히 디지털 회로와 반도체 메모리에서 핵심적인 역할을 한다.
디지털 회로에서의 2진법 활용
트랜지스터는 '스위치'로서의 역할 덕분에 디지털 회로의 기본 구성 요소가 되었다. 트랜지스터가 ON 상태일 때를 '1'(참, High), OFF 상태일 때를 '0'(거짓, Low)으로 대응시켜 이진법 논리를 구현한다. 수많은 트랜지스터를 조합하여 기본적인 논리 게이트(AND, OR, NOT 등)를 만들 수 있으며, 이러한 논리 게이트들이 모여 CPU(중앙 처리 장치), GPU(그래픽 처리 장치), 마이크로컨트롤러와 같은 복잡한 디지털 시스템을 구성한다.
예를 들어, 컴퓨터의 프로세서는 수십억 개의 트랜지스터로 이루어져 있으며, 이 트랜지스터들이 초고속으로 켜지고 꺼지면서 복잡한 계산과 데이터 처리를 수행한다. 트랜지스터의 소형화와 고속 스위칭 능력은 현대 컴퓨팅 성능 발전의 핵심 동력이 되었다.
RAM 및 기타 반도체 메모리 응용
트랜지스터는 정보를 저장하는 반도체 메모리에도 필수적으로 사용된다.
DRAM (Dynamic Random Access Memory): 컴퓨터의 주 기억 장치로 널리 사용되는 DRAM은 하나의 트랜지스터와 하나의 커패시터(Capacitor)로 구성된 셀에 정보를 저장한다. 트랜지스터는 커패시터에 전하를 충전하거나 방전하여 0과 1의 정보를 기록하고 읽는 스위치 역할을 한다. 커패시터에 저장된 전하는 시간이 지남에 따라 누설되므로, DRAM은 주기적으로 정보를 새로 고쳐주는(Refresh) 과정이 필요하다.
SRAM (Static Random Access Memory): SRAM은 DRAM보다 빠르지만 더 비싸고 집적도가 낮은 메모리이다. 일반적으로 4~6개의 트랜지스터로 구성된 래치(Latch) 회로를 사용하여 정보를 저장한다. 커패시터가 필요 없고 주기적인 리프레시가 필요 없어 고속 데이터 처리에 유리하며, CPU 캐시 메모리 등에 사용된다.
NAND/NOR 플래시 메모리: 스마트폰, SSD(Solid State Drive) 등에 사용되는 비휘발성 메모리인 플래시 메모리는 '플로팅 게이트 트랜지스터'라는 특수한 트랜지스터 구조를 이용한다. 이 트랜지스터는 게이트 아래에 전하를 영구적으로 가둘 수 있는 플로팅 게이트를 가지고 있어 전원이 꺼져도 정보가 지워지지 않는다.
이처럼 트랜지스터는 메모리 종류와 관계없이 데이터를 읽고 쓰는 데 필요한 핵심적인 스위칭 소자로 기능하며, 현대 정보 기술의 발전을 가능하게 한다.
6. 기술적 요소 및 최신 발전
무어의 법칙(Moore's Law)에 따라 반도체 미세화는 지속적으로 이루어져 왔지만, 트랜지스터 크기가 나노미터(nm) 단위로 작아지면서 물리적 한계에 부딪히기 시작했다. 채널 길이가 짧아지면서 발생하는 누설 전류(Leakage Current), 단채널 효과(Short Channel Effect) 등으로 인해 트랜지스터의 성능과 전력 효율이 저하되는 문제가 발생한 것이다. 이러한 한계를 극복하기 위해 새로운 트랜지스터 구조와 공정 기술이 개발되고 있다.
핀 전계 효과 트랜지스터(FinFET)
FinFET (Fin Field-Effect Transistor)은 기존의 평면형(Planar) 트랜지스터의 한계를 극복하기 위해 개발된 3차원(3D) 구조의 트랜지스터이다. 평면형 트랜지스터는 게이트가 채널의 한 면만 제어하기 때문에 미세화될수록 누설 전류 제어가 어려워진다.
FinFET은 이름처럼 반도체 기판 위에 물고기 지느러미(Fin) 모양의 채널을 형성하고, 게이트가 이 핀의 세 면(양옆과 위)을 감싸는 구조를 가진다. 이 3면 게이트 구조는 게이트가 채널에 대한 제어력을 크게 향상시켜 누설 전류를 효과적으로 줄이고, 트랜지스터의 스위칭 속도와 전력 효율을 개선한다. FinFET 기술은 2010년대 초반 22nm, 14nm 공정부터 상용화되기 시작하여 현재 7nm, 5nm 등 최첨단 공정에서 널리 사용되고 있다. 인텔, 삼성전자, TSMC 등 주요 반도체 기업들이 FinFET을 채택하며 반도체 미세화의 선두를 이끌어 왔다.
게이트 올 어라운드(GAA) 기술 및 BSPDN
FinFET 역시 3nm 이하의 초미세 공정에서는 물리적 한계에 직면하기 시작했다. 이를 극복하기 위해 등장한 차세대 기술이 바로 GAA (Gate All Around) 기술이다.
GAA 트랜지스터는 게이트가 채널의 모든 네 면을 완전히 감싸는 구조를 가진다. 이는 FinFET보다 채널에 대한 게이트의 제어력을 더욱 극대화하여 누설 전류를 최소화하고, 전력 효율과 성능을 한층 더 향상시킨다. 삼성전자는 2022년 세계 최초로 GAA 기반 3nm 공정 양산을 시작했으며, 삼성전자는 GAA 기술을 'MBCFET(Multi-Bridge Channel FET)'이라고 부르며 나노시트(Nanosheet) 형태의 채널을 활용한다. TSMC와 인텔 또한 2nm 공정부터 GAA 기술을 적용할 계획이다. GAA 기술은 2nm, 1.4nm 등 미래 초미세 공정에서 필수적인 요소로 자리매김할 것으로 예상된다.
또한, 반도체 성능 향상을 위한 또 다른 혁신 기술로 BSPDN (Backside Power Delivery Network)이 주목받고 있다. 기존 반도체 칩은 전력 공급선과 신호선이 모두 칩 전면(Front Side)에 배치되어 있어, 미세화될수록 배선 간의 간섭과 전력 전달 효율 저하 문제가 발생했다. BSPDN은 전력 공급망을 칩의 뒷면(Backside)으로 이동시켜 신호선과 전력선을 분리하는 기술이다. 이를 통해 칩 전면의 배선 밀도를 높여 트랜지스터 집적도를 증가시키고, 전력 손실을 줄여 전력 효율을 개선하며, 신호 간섭을 최소화하여 칩의 전반적인 성능을 향상시킬 수 있다. 삼성전자, 인텔 등 주요 반도체 기업들은 2nm 공정부터 BSPDN 적용을 목표로 연구 개발에 박차를 가하고 있다.
7. 결론
트랜지스터는 20세기 중반 발명된 이래, 인류 문명에 지대한 영향을 미치며 전자공학의 발전을 견인해 왔다.
트랜지스터가 전자공학에 미친 영향
트랜지스터는 진공관을 대체하며 전자 기기의 혁명적인 소형화, 경량화, 저전력화를 가능하게 했다. 트랜지스터의 등장은 집적회로(IC)의 개발로 이어졌고, 이는 개인용 컴퓨터, 스마트폰, 인터넷, 인공지능 등 오늘날 우리가 누리는 모든 첨단 기술의 기반을 마련했다. 무어의 법칙에 따라 트랜지스터의 집적도는 기하급수적으로 증가하며 컴퓨팅 성능을 비약적으로 발전시켰고, 이는 정보화 시대를 열어젖히는 결정적인 역할을 했다. 트랜지스터는 단순히 부품을 넘어 현대 사회의 디지털 인프라를 구축하는 핵심 동력이었다.
앞으로의 기술 발전 방향
트랜지스터 기술은 여전히 진화 중이다. FinFET을 넘어 GAA, 그리고 BSPDN과 같은 새로운 3차원 구조 및 전력 공급 기술은 반도체 미세화의 물리적 한계를 극복하고 성능과 효율을 지속적으로 향상시키고 있다.
앞으로는 더 미세한 나노스케일 공정 기술 개발과 함께, 탄소 나노튜브(CNT), 2D 물질(그래핀, 전이금속 칼코겐화합물 등)과 같은 신소재를 트랜지스터 채널에 적용하여 성능을 극대화하려는 연구가 활발히 진행될 것이다. 또한, 양자 컴퓨팅, 뉴로모픽 컴퓨팅(뇌의 작동 방식을 모방한 컴퓨팅)과 같은 차세대 컴퓨팅 패러다임에 적합한 새로운 개념의 트랜지스터 및 반도체 소자 개발도 중요한 연구 방향이다.
트랜지스터는 앞으로도 지속적인 혁신을 통해 더욱 빠르고, 작고, 효율적인 전자 기기를 가능하게 하며, 인류의 삶을 더욱 풍요롭게 만드는 데 핵심적인 역할을 할 것이다.
참고 문헌
트랜지스터란? | 전자 기초 지식 | 로옴 주식회사 - ROHM Semiconductor. https://www.rohm.co.kr/electronics-basics/transistor/transistor_what1
전자 혁명의 시초 '트랜지스터' 알아보기! - 삼성디스플레이 뉴스룸 (2020-07-06). https://news.samsungdisplay.com/2020/07/06/%EC%A0%84%EC%9E%90-%ED%98%81%EB%AA%85%EC%9D%98-%EC%8B%9C%EC%B4%88-%ED%8A%B8%EB%9E%9C%EC%A7%80%EC%8A%A4%ED%84%B0-%EC%95%8C%EC%95%84%EB%B3%B4%EA%B8%B0/
트랜지스터 - 위키백과, 우리 모두의 백과사전. https://ko.wikipedia.org/wiki/%ED%8A%B8%EB%9E%9C%EC%A7%80%EC%8A%A4%ED%84%B0
트랜지스터 - 나무위키 (2025-09-11). https://namu.wiki/w/%ED%8A%B8%EB%9E%9C%EC%A7%80%EC%8A%A4%ED%84%B0
BSPDN(Backside Power Delivery Network)이란? 삼성 반도체 기술 - 루원부부의 일상❤️ (2024-07-24). https://ruwonbubu.tistory.com/entry/BSPDNBackside-Power-Delivery-Network%EC%9D%B4%EB%9E%80-%EC%82%BC%EC%84%B1-%EB%B0%98%EB%8F%84%EC%B2%B4-%EA%B8%B0%EC%88%A0
트랜지스터 (BJT & FET) - 블루스카이 (2023-05-24). https://bluesky0077.tistory.com/15
트랜지스터의 이해 l < 칼럼 < 오피니언 < 기사본문 - 테크월드뉴스- 이건한 기자 (2019-04-23). http://www.epnc.co.kr/news/articleView.html?idxno=94207
[IT조선 백과사전] ㉕게이트올어라운드(GAA) (2023-06-28). https://it.chosun.com/site/data/html_dir/2023/06/28/2023062803622.html
트랜지스터는 어떻게 개발되었을까? - 브런치 (2021-12-28). https://brunch.co.kr/@skysky91/2
게이트올어라운드(GAA) - 단비뉴스 (2024-06-28). https://www.danbinews.com/news/articleView.html?idxno=32497
Backside Power Delivery Network (BSPDN)란? - Semiconductor 공부하자 - 티스토리 (2024-11-22). https://semiconductor-study.tistory.com/entry/Backside-Power-Delivery-Network-BSPDN%EC%9D%B4%EB%9E%80
트랜지스터의 역할과 원리 - 한국전자기술 (2022-12-29). https://koreaelectronics.kr/news/%ED%8A%B8%EB%9E%9C%EC%A7%80%EC%8A%A4%ED%84%B0%EC%9D%98-%EC%97%AD%ED%95%A0%EA%B3%BC-%EC%9B%90%EB%A6%AC/
Back-Side Power Delivery Network (BSPDN) - ITPE * JackerLab (2025-05-28). https://itpe.tistory.com/479
NPN과 PNP 트랜지스터의 원리와 차이점 - 전기러기 (2025-03-05). https://electricruggy.com/npn-pnp-transistor/
FinFET 공정, 차세대 반도체 기술의 핵심 - 공대 엉아의 파랑소리(Bluesound) (2024-07-03). https://bluesound.tistory.com/48
BJT(Bipolar Junction Transistor)와 FET(Field Effect Transistor) - MoonNote - 티스토리 (2022-06-16). https://moonnote.tistory.com/entry/BJT-Bipolar-Junction-Transistor%EC%99%80-FET-Field-Effect-Transistor
[책갈피 속의 오늘]1947년 트랜지스터 발명 - 동아일보 (2004-12-22). https://www.donga.com/news/article/all/20041222/8138245/1
GAA구조와 FinFet구조의 차이점 - 주식하는 똥개 - 티스토리 (2020-01-04). https://dog-stock.tistory.com/13
삼성전자 “게이트올어라운드 구조, 1나노대까지 적용” - 시사저널e (2023-05-10). https://www.sisajournal-e.com/news/articleView.html?idxno=301416
미니 BSPDN 선택지 - 미코 (2024-04-27). https://m.blog.naver.com/mico_corp/223429399859
트랜지스터 종류와 차이점: BJT, FET, MOSFET - 공학자 아빠의 배움과 유산 (2025-05-31). https://engineer-daddy.tistory.com/260
[만파식적] GAA(게이트올어라운드) - 서울경제 (2024-06-13). https://www.sedaily.com/NewsView/2D48I9M65X
트랜지스터 기술의 발전과 미래 트렌드. https://www.szsaco.com/ko/info/evolution-of-transistor-technology-and-future-trends
트랜지스터 - 증폭기와 스위치로의 작동개념 - 임베디드 레시피. https://embedded.tistory.com/49
FINFET 이해 (FIN 필드 효과 트랜지스터) 구조, 유형 및 응용 프로그램 (2025-07-09). https://www.chip-design.com/ko/article/finfet-understanding-fin-field-effect-transistor-structure-types-and-applications_9731.html
두 가지 대표적인 Transistor, FET와 BJT의 차이점 - Trianglesquare (2023-10-18). https://trianglesquare.tistory.com/entry/%EB%91%90-%EA%B0%80%EC%A7%80-%EB%8C%80%ED%91%9C%EC%A0%81%EC%9D%B8-Transistor-FET%EC%99%80-BJT%EC%9D%98-%EC%B0%A8%EC%9D%B4%EC%A0%90
실리콘을 실리콘밸리로 가져온 트랜지스터 발명가 '윌리엄 쇼클리' - 테크월드뉴스 (2020-04-24). http://www.epnc.co.kr/news/articleView.html?idxno=95529
트랜지스터(transistor) 강의록 - 2 증폭 작용 - 베니지오 IT 월드 (2019-04-16). https://benigio.tistory.com/26
삼성전자, BSPDN 연구성과 공개…면적ˑ배선길이 문제 개선 - 디일렉 (2023-08-11). https://www.thelec.kr/news/articleView.html?idxno=22180
트랜지스터의 75년, 반도체는 어떻게 세상을 바꿨나 (4) "샌드위치 원리 바이폴라 트랜지스" (2022-12-21). https://www.sciencetimes.co.kr/news/%ED%8A%B8%EB%9E%9C%EC%A7%80%EC%8A%A4%ED%84%B0%EC%9D%98-75%EB%85%84-%EB%B0%98%EB%8F%84%EC%B2%B4%EB%8A%94-%EC%96%B4%EB%96%BB%EA%B2%8C-%EC%84%B8%EC%83%81%EC%9D%84-%EB%B0%94%EA%BF%84%EB%82%98-4/
반도체 소자 소개 finfet, coner effect. 3탄 - 반도체 초고수 - 티스토리. https://m.blog.naver.com/dlwldms2000/223027964405
게이트 올 어라운드(GAA)를 통한 반도체 성능 향상. https://www.samsung.com/semiconductor/kr/newsroom/tech-blog/gate-all-around-gaa-for-enhanced-semiconductor-performance/
NPN과 PNP 트랜지스터의 차이점 이해하기 - 다다오 - Dadao (2025-04-14). https://dadao.so/ko/npn-vs-pnp-transistor/
[이재구코너]인류최초의 반도체 트랜지스터 발명 - 지디넷코리아 (2009-12-17). https://zdnet.co.kr/view/?no=20091217174623
FinFET(핀펫), GAA (Gate All Around) 란? - 쪼니의 반도체 이야기 (2023-07-27). https://jjony.tistory.com/43
전기 에너지의 증폭 {트랜지스터의 원리} - 뻔하지만 Fun한 독서노트 - 티스토리 (2022-05-30). https://funfunnote.tistory.com/62
Finfets : 큰 이점이있는 작은 트랜지스터 (2025-05-19). https://www.chip-design.com/ko/article/finfets-small-transistors-with-big-advantages_9713.html
PNP · NPN 트랜지스터 개념 이해하기 (2024-04-11). https://blog.naver.com/tictoc0303/223412521191
[트랜지스터] FET와 BJT의 차이점, FET 종류, MOSFET의 원리 - 공대누나의 일상과 전자공학 (2020-09-27). https://gongdenuna.tistory.com/4
NPN 및 PNP 트랜지스터가 설명 : 회로 기호 및 작동 (2025-02-11). https://www.chip-design.com/ko/article/npn-and-pnp-transistors-explained-circuit-symbols-and-operation_9637.html
핀펫 - 위키백과, 우리 모두의 백과사전. https://ko.wikipedia.org/wiki/%ED%95%80%ED%8E%AB
트랜지스터. https://contents.kocw.net/KOCW/document/2021/ulsan/kimyongsik/3.pdf
트랜지스터(transistor) 강의록 - 1 NPN, PNP형 트랜지스터의 기초 - 베니지오 IT 월드 (2019-04-15). https://benigio.tistory.com/25
Planar vs. Finfet vs. GAA (MBCFFET) - IT 이야기 - 티스토리 (2024-02-21). https://it-story-danny.tistory.com/2
트랜지스터 기술의 독창적인 응용과 미래 가능성. - lohasweet - 티스토리 (2023-11-18). https://lohasweet.tistory.com/entry/%ED%8A%B8%EB%9E%9C%EC%A7%80%EC%8A%A4%ED%84%B0-%EA%B8%B0%EC%88%A0%EC%9D%98-%EB%8F%85%EC%B0%BD%EC%A0%81%EC%9D%B8-%EC%9D%91%EC%9A%A9%EA%B3%BC-%EB%AF%B8%EB%9E%98-%EA%B0%80%EB%8A%A5%EC%84%B1
반도체의 미래: 앞으로의 방향은? – 하드웨어 가이드. https://hardware-guide.com/ko/%EB%B0%98%EB%8F%84%EC%B2%B4%EC%9D%98-%EB%AF%B8%EB%9E%98-%EC%95%9E%EC%9C%BC%EB%A1%9C%EC%9D%98-%EB%B0%A9%ED%96%A5%EC%9D%80/
[Behind the CHIP] 반도체, 그 성장의 기록: 과거, 현재, 그리고 미래 (2024-11-20). https://www.samsungsemicon.com/kr/newsroom/tech-trends/behind-the-chip-history-present-and-future-of-semiconductors.html
반도체 기술발전과 미래컴퓨팅 기술의 진화(상) - 한국지능정보사회진흥원 (2024-11-27). https://www.nia.or.kr/site/nia_kor/ex/bbs/View.do?cbIdx=99887&bcIdx=26210&parentSeq=26210
FinFET? GAA? RibbonFET? - 브런치. https://brunch.co.kr/@skysky91/10
MOSFET의 진화, FinFET, GAA, MBCFET, CFET 비교 (2023 업데이트 !!) - YouTube (2023-09-08). https://m.youtube.com/watch?v=0h94XbJcQzE
)’과 ‘파워비아(PowerVia)’ 전력 공급 기술을 사용해 전기는 적게 쓰면서 성능은 훨씬 좋게 만들었다는 것이 특징이다.
팬서 레이크는 인텔이 2025년부터 생산하기 시작한 야심작이다. 18A 제조 공정 기반의 첫 제품으로, Core Ultra Series 3 프로세서는 다양한 라인업을 제공한다. 그중 X9과 X7 모델은 컴퓨터의 두뇌인 CPU 코어가 최대 16개, 12 Xe3 기반 GPU를 갖추고 있다. 덕분에 한 번에 여러 작업을 처리하는 멀티스레드 성능은 이전 세대 대비 최대 60%, 게임 성능은 무려 77%나 빨라졌다. 인텔의 짐 존슨(Jim Johnson)은 “팬서 레이크는 이전 세대보다 60%나 더 강력한 성능을 자랑한다”라며 자신감을 드러냈다.
인텔은 인공지능(AI) 기술과 데이터를 빠르게 처리하는 엣지 컴퓨팅
엣지 컴퓨팅
데이터가 폭발적으로 증가하는 현대 사회에서, 이 데이터를 어떻게 효율적으로 처리하고 활용할 것인가는 중요한 과제이다. 중앙 집중식 클라우드 컴퓨팅이 한계를 드러내면서, 데이터가 생성되는 바로 그 지점에서 데이터를 처리하는 '엣지 컴퓨팅(Edge Computing)'이 새로운 패러다임으로 부상하고 있다. 엣지 컴퓨팅은 실시간 데이터 처리, 낮은 지연 시간, 대역폭 절감 등의 이점을 제공하며 자율주행, 스마트 팩토리, 스마트 시티 등 다양한 분야에서 혁신을 이끌고 있다. 본 보고서는 엣지 컴퓨팅의 개념부터 핵심 원리, 활용 사례, 그리고 미래 전망까지 심층적으로 다룬다.
목차
엣지 컴퓨팅의 개념 및 정의
엣지 컴퓨팅의 등장 배경 및 발전 과정
엣지 컴퓨팅의 핵심 원리 및 기술
엣지 컴퓨팅의 주요 특징 및 이점
엣지 컴퓨팅의 활용 분야 및 사례
엣지 컴퓨팅의 현재 동향 및 과제
엣지 컴퓨팅의 미래 전망
엣지 컴퓨팅의 개념 및 정의
엣지 컴퓨팅은 데이터를 중앙 데이터 센터나 클라우드가 아닌, 데이터가 생성되는 지점(네트워크의 '엣지' 또는 가장자리)과 가까운 곳에서 처리하는 분산형 컴퓨팅 아키텍처이다. 이는 데이터 전송 거리를 최소화하여 지연 시간을 줄이고, 대역폭 사용량을 절감하며, 실시간 데이터 처리 및 분석을 가능하게 한다.
엣지 컴퓨팅이란?
엣지 컴퓨팅은 데이터 소스, 즉 사물 인터넷(IoT) 장치, 센서, 스마트폰 등에서 발생하는 데이터를 클라우드와 같은 원격 서버로 보내지 않고, 데이터가 생성되는 물리적 위치에 근접한 곳에서 처리하는 기술이다. 이는 중앙 집중식 클라우드 컴퓨팅과 대비되는 개념으로, 데이터 처리의 효율성과 신속성을 극대화하는 데 중점을 둔다. 예를 들어, 공장의 생산 라인에서 센서 데이터가 발생하면, 이 데이터를 멀리 떨어진 클라우드 서버로 보내 분석하는 대신, 공장 내의 소형 서버(엣지 서버)에서 즉시 분석하여 이상 징후를 감지하고 조치를 취하는 방식이다. 이러한 근접 처리는 마치 우리 몸의 반사 신경처럼, 뇌(클라우드)까지 정보가 전달되기 전에 팔다리(엣지)에서 즉각적으로 반응하는 것과 유사하다.
클라우드 컴퓨팅과의 차이점
클라우드 컴퓨팅과 엣지 컴퓨팅은 데이터를 처리하는 방식에서 근본적인 차이를 보인다. 클라우드 컴퓨팅은 인터넷상의 원격 서버 네트워크를 활용하여 대규모 데이터를 저장, 처리, 분석하는 중앙 집중식 모델이다. 이는 확장성과 유연성이 뛰어나지만, 데이터가 클라우드까지 이동하는 데 시간이 소요되어 지연 시간이 발생하고, 막대한 양의 데이터를 전송하는 데 많은 대역폭이 필요하다는 한계가 있다. 반면, 엣지 컴퓨팅은 단말 기기 또는 로컬 엣지 서버를 활용하여 데이터 처리 위치를 분산시킨다. 이는 데이터 소스에 가까운 곳에서 데이터를 처리함으로써 지연 시간을 최소화하고, 네트워크 대역폭 사용량을 줄이며, 오프라인 환경에서도 독립적인 운영이 가능하다는 장점을 가진다. 클라우드 컴퓨팅이 거대한 중앙 도서관이라면, 엣지 컴퓨팅은 각 지역에 분산된 작은 서점과 같다고 비유할 수 있다. 필요한 정보를 즉시 얻을 수 있는 가까운 서점(엣지)과 광범위한 자료를 보관하는 중앙 도서관(클라우드)이 상호 보완적으로 기능하는 것이다.
엣지 컴퓨팅의 등장 배경 및 발전 과정
엣지 컴퓨팅은 사물 인터넷(IoT) 기기의 폭발적인 증가와 5G 네트워크의 발전, 그리고 실시간 데이터 처리 요구사항의 증대로 인해 중요성이 부각되었다. 과거 중앙 집중식 컴퓨팅 모델의 한계를 극복하며 진화해왔다.
클라우드 컴퓨팅의 한계
지난 수십 년간 클라우드 컴퓨팅은 IT 인프라의 혁신을 이끌었지만, 데이터 양의 급증과 실시간 처리 요구사항 증가로 인해 한계에 직면했다. 첫째, 지연 시간(Latency) 문제이다. 자율주행차나 산업 자동화와 같이 즉각적인 반응이 필요한 애플리케이션의 경우, 데이터가 클라우드까지 이동하고 처리되어 다시 돌아오는 데 걸리는 수십~수백 밀리초의 지연 시간은 치명적일 수 있다. 둘째, 대역폭(Bandwidth) 문제이다. 수십억 개의 IoT 기기에서 생성되는 방대한 양의 데이터를 모두 클라우드로 전송하는 것은 막대한 네트워크 대역폭을 요구하며, 이는 네트워크 혼잡과 비용 증가로 이어진다. 셋째, 비용 효율성 문제이다. 모든 데이터를 클라우드로 전송하고 저장하는 데 드는 비용은 기하급수적으로 증가하며, 특히 장기적인 관점에서 비효율적일 수 있다. 넷째, 보안 및 프라이버시 문제이다. 민감한 데이터가 네트워크를 통해 클라우드로 전송되는 과정에서 보안 위협에 노출될 수 있으며, 데이터 주권 및 규제 준수 문제도 발생할 수 있다. 이러한 클라우드 컴퓨팅의 한계들이 엣지 컴퓨팅의 필요성을 증대시키는 주요 요인이 되었다.
IoT 및 5G 네트워크의 확산
사물 인터넷(IoT) 기기의 확산은 엣지 컴퓨팅의 등장을 가속화한 핵심 동력이다. 전 세계적으로 수십억 개의 IoT 기기(센서, 카메라, 스마트 기기 등)가 실시간으로 방대한 양의 데이터를 생성하고 있으며, 2025년에는 연결된 IoT 기기가 270억 개에 달할 것으로 예상된다. 이처럼 폭증하는 데이터를 모두 클라우드로 전송하는 것은 비효율적일 뿐만 아니라, 물리적으로 불가능에 가깝다. 또한, 5G 네트워크의 상용화는 엣지 컴퓨팅의 잠재력을 극대화하는 촉매제가 되었다. 5G는 초고속(최대 20Gbps), 초저지연(1ms 이하), 초연결(제곱킬로미터당 100만 개 기기 연결) 특성을 제공한다. 이러한 5G의 특성은 엣지 디바이스와 엣지 서버 간의 빠르고 안정적인 통신을 가능하게 하여, 엣지 컴퓨팅 환경에서 실시간 데이터 처리 및 분석의 효율성을 크게 향상시킨다. 특히, 5G의 초저지연 특성은 자율주행, 원격 수술 등 지연 시간에 매우 민감한 애플리케이션에서 엣지 컴퓨팅의 역할을 필수적으로 만든다.
주요 기술 발전사 (클라우드렛, 포그 컴퓨팅 등)
엣지 컴퓨팅의 개념은 비교적 최근에 부상했지만, 그 기반이 되는 분산 컴퓨팅 연구는 오래전부터 진행되어 왔다. 엣지 컴퓨팅의 초기 형태를 제시한 주요 개념으로는 '클라우드렛(Cloudlet)'과 '포그 컴퓨팅(Fog Computing)'이 있다. 2009년 카네기 멜런 대학교의 마하데브 스리니바산(Mahadev Satyanarayanan) 교수는 모바일 기기의 컴퓨팅 능력을 보완하기 위해 근접한 소형 데이터 센터를 활용하는 '클라우드렛' 개념을 제안했다. 클라우드렛은 모바일 기기 사용자에게 클라우드 서비스와 유사한 기능을 제공하면서도, 지연 시간을 최소화하여 모바일 클라우드 컴퓨팅의 한계를 극복하고자 했다. 이후 2012년 시스코(Cisco)는 네트워크 엣지에서 데이터 처리 및 스토리지를 제공하는 '포그 컴퓨팅' 개념을 도입했다. 포그 컴퓨팅은 클라우드와 엣지 디바이스 사이의 중간 계층에서 컴퓨팅 자원을 제공하여, IoT 기기에서 생성되는 방대한 데이터를 효율적으로 처리하고 분석하는 것을 목표로 했다. 이 두 개념은 엣지 컴퓨팅의 핵심 원리인 '데이터 소스 근접 처리'와 '분산 컴퓨팅'의 중요성을 강조하며, 오늘날 엣지 컴퓨팅 발전의 중요한 발판을 마련했다.
엣지 컴퓨팅의 핵심 원리 및 기술
엣지 컴퓨팅은 데이터를 생성하는 장치 또는 그 근처에서 데이터를 처리하여 효율성을 극대화한다. 이를 위해 다양한 하드웨어 및 소프트웨어 기술이 결합된다.
데이터 처리 원리 (근접성, 분산 처리)
엣지 컴퓨팅의 핵심 원리는 '근접성(Proximity)'과 '분산 처리(Distributed Processing)'이다. 데이터 처리의 근접성은 데이터를 생성하는 소스(IoT 기기, 센서 등)에 최대한 가깝게 위치시켜 처리함으로써 데이터 전송에 필요한 물리적 거리를 줄이고, 이로 인해 발생하는 지연 시간을 최소화하는 것이다. 이는 마치 우리 몸이 뜨거운 물체에 닿았을 때 뇌의 명령 없이도 반사적으로 손을 떼는 것과 같은 즉각적인 반응을 가능하게 한다. 분산 처리는 중앙의 대규모 서버에 모든 데이터를 집중시키는 대신, 네트워크의 여러 엣지 노드에 컴퓨팅 자원을 분산시켜 데이터를 병렬적으로 처리하는 방식이다. 이러한 분산 아키텍처는 특정 노드의 장애가 전체 시스템에 미치는 영향을 최소화하고, 시스템의 확장성과 유연성을 높이는 데 기여한다. 즉, 엣지 컴퓨팅은 데이터가 생성되는 현장에서 필요한 정보를 즉시 추출하고, 중요한 데이터만 선별적으로 클라우드로 전송하여 전체 시스템의 효율성을 극대화하는 전략이다.
엣지 디바이스 및 서버
엣지 컴퓨팅 환경은 다양한 하드웨어 구성 요소로 이루어져 있다. 주요 구성 요소는 데이터를 생성하는 '엣지 디바이스(Edge Devices)'와 이 데이터를 처리하는 '엣지 서버(Edge Servers)'이다. 엣지 디바이스는 IoT 센서, 카메라, 스마트폰, 웨어러블 기기, 자율주행차의 온보드 컴퓨터, 산업용 로봇 등 데이터를 직접 수집하거나 생성하는 모든 종류의 장치를 포함한다. 이들은 종종 컴퓨팅 자원이 제한적이며, 특정 목적에 최적화되어 있다. 엣지 서버는 엣지 디바이스에서 생성된 데이터를 수집하고 처리하는 역할을 하는 소형 서버 또는 게이트웨이이다. 이들은 클라우드 데이터 센터만큼 강력하지는 않지만, 제한된 환경에서 실시간 데이터 처리 및 분석을 수행할 수 있는 충분한 컴퓨팅, 스토리지, 네트워킹 기능을 갖추고 있다. 엣지 서버는 공장 현장, 기지국, 차량 내부, 또는 스마트 빌딩 등 데이터 소스에 물리적으로 가깝게 배치되어, 클라우드와의 통신 없이도 독립적인 데이터 처리가 가능하도록 지원한다.
엣지 AI 및 머신러닝
엣지 컴퓨팅과 인공지능(AI), 머신러닝(ML)의 결합은 '엣지 AI(Edge AI)'라는 강력한 기술 패러다임을 형성한다. 엣지 AI는 AI/ML 모델을 엣지 디바이스 또는 엣지 서버에 직접 배포하여, 데이터를 클라우드로 전송할 필요 없이 현장에서 실시간으로 데이터를 분석하고 추론하는 기술이다. 예를 들어, 스마트 카메라가 사람의 움직임을 감지하여 침입 여부를 판단하거나, 산업용 로봇이 생산 라인의 불량을 실시간으로 검사하는 등의 작업이 엣지 AI를 통해 이루어진다. 이러한 방식은 클라우드 기반 AI에 비해 여러 이점을 제공한다. 첫째, 지연 시간이 획기적으로 줄어들어 즉각적인 의사결정과 반응이 필요한 애플리케이션에 필수적이다. 둘째, 데이터가 로컬에서 처리되므로 클라우드로 전송되는 민감한 데이터의 양을 최소화하여 보안 및 프라이버시를 강화할 수 있다. 셋째, 네트워크 대역폭 사용량을 절감하여 운영 비용을 줄일 수 있다. 넷지, 인터넷 연결이 불안정한 환경에서도 AI 기능을 독립적으로 수행할 수 있어 시스템의 안정성을 높인다. 엣지 AI는 자율주행, 스마트 팩토리, 예측 유지보수, 의료 진단 등 다양한 분야에서 혁신적인 솔루션을 제공하는 핵심 기술로 자리매김하고 있다.
엣지 컴퓨팅의 주요 특징 및 이점
엣지 컴퓨팅은 기존 중앙 집중식 컴퓨팅 모델이 제공하기 어려운 다양한 이점을 제공하며, 이는 여러 산업 분야에서 혁신을 가능하게 한다.
낮은 지연 시간 및 실시간 처리
엣지 컴퓨팅의 가장 큰 이점 중 하나는 낮은 지연 시간(Low Latency)과 실시간 처리(Real-time Processing) 능력이다. 데이터가 생성되는 지점에서 즉시 처리되므로, 클라우드로 데이터를 전송하고 다시 받는 과정에서 발생하는 지연 시간을 획기적으로 줄여준다. 예를 들어, 자율주행차의 경우, 도로 상황을 감지한 센서 데이터가 클라우드를 거쳐 처리된다면 수십 밀리초의 지연이 발생할 수 있으며, 이는 사고로 이어질 수 있다. 하지만 엣지 컴퓨팅 환경에서는 차량 내 엣지 프로세서가 데이터를 즉시 분석하여 브레이크 작동이나 방향 전환과 같은 결정을 실시간으로 내릴 수 있다. 이러한 초저지연 특성은 산업 자동화, 원격 수술, 증강 현실(AR)/가상 현실(VR)과 같이 밀리초 단위의 반응이 중요한 애플리케이션에서 필수적이다. 엣지 컴퓨팅은 실시간 의사결정을 가능하게 하여 시스템의 반응성과 효율성을 극대화한다.
대역폭 절감 및 비용 효율성
엣지 컴퓨팅은 네트워크 대역폭 사용량을 절감하고, 이로 인해 전체적인 운영 비용을 낮추는 데 기여한다. 모든 원시 데이터를 클라우드로 전송하는 대신, 엣지에서 필요한 데이터만 필터링하고 요약하여 전송함으로써 클라우드로 전송해야 할 데이터 양을 획기적으로 줄일 수 있다. 예를 들어, 수백 대의 CCTV 카메라가 24시간 영상을 촬영하는 환경에서 모든 영상을 클라우드로 전송한다면 막대한 네트워크 비용과 스토리지 비용이 발생한다. 하지만 엣지 컴퓨팅을 활용하면, 엣지 서버에서 AI를 통해 움직임이 감지된 특정 프레임이나 요약된 정보만 클라우드로 전송하여 대역폭 사용량을 90% 이상 절감할 수 있다. 이러한 대역폭 절감은 데이터 전송 비용을 직접적으로 줄일 뿐만 아니라, 클라우드 스토리지 비용과 컴퓨팅 비용까지 절감하는 효과를 가져와 전반적인 IT 인프라의 비용 효율성을 높인다.
데이터 보안 및 프라이버시 강화
엣지 컴퓨팅은 데이터 보안 및 프라이버시를 강화하는 데 중요한 역할을 한다. 민감한 데이터가 로컬에서 처리되므로 외부 네트워크로 전송되는 양을 최소화하여 데이터 유출 위험을 줄일 수 있다. 클라우드로 전송되는 데이터가 적을수록, 전송 과정에서 발생할 수 있는 해킹이나 중간자 공격으로부터 데이터를 보호할 가능성이 높아진다. 또한, 특정 국가나 지역의 데이터 주권 및 개인정보보호 규제(예: GDPR)를 준수하는 데 유리하다. 예를 들어, 병원에서 환자의 생체 데이터를 처리할 때, 모든 데이터를 클라우드로 보내지 않고 병원 내 엣지 서버에서 처리한다면, 민감한 의료 정보가 외부 네트워크에 노출될 위험을 최소화할 수 있다. 엣지 컴퓨팅은 데이터가 생성된 곳에서 데이터를 제어하고 관리할 수 있는 능력을 제공하여, 기업과 사용자가 데이터에 대한 통제권을 강화하고 규제 준수 부담을 줄이는 데 기여한다.
높은 가용성 및 안정성
엣지 컴퓨팅은 시스템의 높은 가용성(High Availability)과 안정성(Stability)을 보장한다. 인터넷 연결이 불안정하거나 끊기는 환경에서도 로컬에서 독립적으로 데이터를 처리할 수 있어 서비스의 연속성을 높인다. 중앙 클라우드 시스템에 장애가 발생하더라도, 엣지 노드는 자체적으로 기능을 수행할 수 있으므로 전체 시스템의 다운타임을 최소화할 수 있다. 예를 들어, 원격지의 유전 시설이나 해상 플랫폼과 같이 네트워크 연결이 불안정한 곳에서는 엣지 컴퓨팅이 필수적이다. 현장의 센서 데이터가 클라우드 연결 없이도 엣지 서버에서 실시간으로 분석되어 장비의 오작동을 감지하고 즉각적인 조치를 취할 수 있다. 이러한 분산 아키텍처는 단일 장애 지점(Single Point of Failure)의 위험을 줄이고, 시스템 전체의 복원력을 향상시켜 예측 불가능한 상황에서도 서비스의 안정적인 운영을 가능하게 한다.
엣지 컴퓨팅의 활용 분야 및 사례
엣지 컴퓨팅은 실시간 처리와 낮은 지연 시간이 필수적인 다양한 산업 분야에서 혁신적인 솔루션을 제공한다.
자율주행 자동차 및 스마트 교통
자율주행 자동차는 엣지 컴퓨팅의 가장 대표적인 활용 사례 중 하나이다. 차량 내 수많은 센서(카메라, 레이더, 라이다 등)에서 초당 기가바이트 단위의 방대한 데이터를 생성하며, 이 데이터를 실시간으로 처리하여 주변 환경을 인식하고 즉각적인 의사결정을 내려야 한다. 클라우드를 통해 데이터를 처리하는 것은 지연 시간 문제로 인해 불가능에 가깝다. 엣지 컴퓨팅은 차량 내 온보드 컴퓨터가 이 데이터를 현장에서 처리하여 장애물 감지, 차선 유지, 보행자 인식, 충돌 회피 등의 기능을 1밀리초 이내에 수행할 수 있도록 지원한다. 또한, 스마트 교통 시스템에서는 도로변 엣지 서버가 교통량, 신호등, 보행자 데이터를 실시간으로 분석하여 교통 흐름을 최적화하고 사고 위험을 줄이는 데 기여한다. 한국의 경우, 스마트 고속도로 구축 사업에서 엣지 컴퓨팅 기술을 활용하여 돌발 상황 감지 및 교통 정보 제공의 정확도를 높이는 데 활용될 수 있다.
스마트 팩토리 및 산업 자동화
스마트 팩토리 환경에서 엣지 컴퓨팅은 생산성 향상과 비용 절감에 핵심적인 역할을 한다. 생산 라인의 수많은 센서와 로봇에서 발생하는 데이터를 현장의 엣지 서버에서 실시간으로 분석하여 제품 결함을 즉시 감지하고, 장비의 이상 징후를 예측하여 유지보수 시점을 최적화하는 '예측 유지보수(Predictive Maintenance)'를 가능하게 한다. 예를 들어, 모터의 진동이나 온도를 모니터링하는 센서 데이터가 비정상적인 패턴을 보일 경우, 엣지 AI가 이를 즉시 감지하여 관리자에게 경고하고, 대규모 고장으로 이어지기 전에 예방적 조치를 취할 수 있다. 이는 생산 중단 시간을 최소화하고, 불량률을 낮추며, 장비 수명을 연장하는 데 크게 기여한다. 국내 제조업체들도 엣지 컴퓨팅 기반의 스마트 팩토리 솔루션을 도입하여 생산 효율성을 높이고 있다.
스마트 시티 및 공공 안전
스마트 시티는 도시 내 다양한 IoT 기기(스마트 가로등, CCTV, 환경 센서 등)에서 수집된 데이터를 엣지에서 처리하여 도시 운영의 효율성을 높이고 시민의 삶의 질을 향상시킨다. 예를 들어, 스마트 가로등에 내장된 엣지 프로세서가 주변 밝기와 교통량을 감지하여 조도를 자동으로 조절하고, CCTV 영상 데이터를 엣지에서 분석하여 범죄 예방, 실종자 수색, 교통 위반 단속 등에 활용할 수 있다. 또한, 환경 센서 데이터를 엣지에서 실시간으로 분석하여 미세먼지 농도나 소음 수준을 모니터링하고, 비상 상황(화재, 재난 등) 발생 시 엣지 컴퓨팅 기반의 시스템이 즉각적으로 상황을 인지하고 관련 기관에 통보하여 신속한 대응을 지원한다. 이러한 엣지 기반의 데이터 처리는 도시의 자원 관리 효율성을 높이고, 공공 안전을 강화하는 데 필수적이다.
헬스케어 및 의료 분야
헬스케어 분야에서 엣지 컴퓨팅은 환자 모니터링, 질병 진단, 응급 상황 대응 등에서 혁신적인 가능성을 제공한다. 웨어러블 기기나 의료 장비에서 발생하는 생체 데이터(심박수, 혈압, 혈당 등)를 로컬 엣지 디바이스나 병원 내 엣지 서버에서 빠르게 처리하여 질병 예방, 진단, 치료에 필요한 실시간 정보를 제공한다. 예를 들어, 심장 질환 환자의 웨어러블 기기가 비정상적인 심박수 패턴을 감지하면, 엣지 AI가 즉시 분석하여 의료진에게 경고하거나 응급 서비스에 자동으로 연락할 수 있다. 이는 환자의 생명을 구하는 데 결정적인 역할을 할 수 있다. 또한, 원격 진료 시 고화질 의료 영상 데이터를 엣지에서 전처리하여 클라우드로 전송함으로써 대역폭 부담을 줄이고, 진료의 효율성을 높일 수 있다. 국내에서도 스마트 병원 구축에 엣지 컴퓨팅 기술이 적극적으로 검토되고 있다.
리테일 및 유통
리테일 및 유통 분야에서 엣지 컴퓨팅은 매장 운영 효율성을 높이고 고객 경험을 개선하는 데 활용된다. 매장 내 설치된 카메라와 센서에서 수집된 고객 행동 데이터(이동 경로, 상품 관심도 등)를 엣지 서버에서 실시간으로 분석하여 매장 레이아웃 최적화, 상품 진열 개선, 개인화된 프로모션 제공 등에 활용할 수 있다. 예를 들어, 특정 상품 앞에서 고객이 머무는 시간을 분석하여 인기 상품을 파악하거나, 계산대 대기열을 감지하여 추가 계산원을 배치하는 등의 의사결정을 즉시 내릴 수 있다. 또한, 무인 계산 시스템, 스마트 카트, 재고 관리 시스템 등에도 엣지 컴퓨팅이 적용되어 상품 인식, 재고 파악, 도난 방지 등의 기능을 현장에서 실시간으로 수행한다. 이는 인건비 절감, 재고 관리 효율성 증대, 고객 만족도 향상으로 이어진다.
엣지 컴퓨팅의 현재 동향 및 과제
엣지 컴퓨팅 시장은 빠르게 성장하고 있으며, 다양한 산업에서 그 중요성이 커지고 있다. 그러나 기술 확산을 위한 몇 가지 과제도 존재한다.
시장 성장 및 산업별 도입 가속화
엣지 컴퓨팅 시장은 전례 없는 속도로 성장하고 있다. 글로벌 시장조사기관 가트너(Gartner)는 2025년까지 기업에서 생성되는 데이터의 75% 이상이 중앙 집중식 데이터 센터나 클라우드 외부, 즉 엣지에서 처리될 것으로 전망했다. 이는 2017년 10% 미만이었던 수치와 비교하면 엣지 컴퓨팅의 중요성이 얼마나 급증했는지 보여준다. 또한, IDC(International Data Corporation)는 전 세계 엣지 컴퓨팅 시장이 2023년 2,080억 달러에서 2027년 3,740억 달러로 성장할 것으로 예측하며, 연평균 성장률(CAGR)은 17.1%에 달할 것이라고 밝혔다. 이러한 성장은 통신, 제조, 리테일, 헬스케어 등 거의 모든 산업 분야에서 엣지 컴퓨팅 도입이 가속화되고 있음을 의미한다. 특히, 5G 네트워크의 확산과 AI 기술의 발전은 엣지 컴퓨팅 시장 성장을 더욱 촉진하는 주요 동력으로 작용하고 있다.
클라우드-엣지 하이브리드 아키텍처
엣지 컴퓨팅은 클라우드 컴퓨팅의 대체재가 아닌 보완재로서, 두 기술이 상호 보완적으로 공존하며 최적의 솔루션을 제공하는 '클라우드-엣지 하이브리드 아키텍처'가 확산되고 있다. 엣지 컴퓨팅은 실시간 처리, 낮은 지연 시간, 대역폭 절감, 보안 강화 등의 이점으로 현장 데이터를 효율적으로 처리한다. 반면, 클라우드 컴퓨팅은 대규모 데이터 저장, 복잡한 분석, 장기적인 데이터 보관, 중앙 집중식 관리 및 글로벌 확장성 등의 강점을 가진다. 따라서 대부분의 기업은 엣지에서 데이터를 수집하고 1차 처리한 후, 필요한 핵심 데이터나 장기 보관이 필요한 데이터를 클라우드로 전송하여 심층 분석 및 중앙 관리를 수행하는 하이브리드 모델을 채택하고 있다. 이러한 하이브리드 접근 방식은 각 기술의 장점을 최대한 활용하여 데이터 처리의 효율성과 유연성을 극대화하며, 미래 디지털 인프라의 표준으로 자리매김하고 있다.
표준화 및 오픈소스 동향
엣지 컴퓨팅 생태계의 성숙을 위해 표준화와 오픈소스 기술의 중요성이 커지고 있다. 다양한 벤더와 기술이 난립하는 상황에서 상호 운용성과 호환성을 확보하기 위한 표준화 노력은 필수적이다. 리눅스 재단(Linux Foundation)의 LF Edge, 오픈 엣지 컴퓨팅 이니셔티브(Open Edge Computing Initiative), 유럽 전기통신 표준 협회(ETSI)의 MEC(Multi-access Edge Computing) 등 여러 표준화 기구에서 엣지 컴퓨팅의 아키텍처, 인터페이스, 관리 모델 등에 대한 표준을 개발하고 있다. 또한, 오픈소스 기술은 엣지 컴퓨팅의 개발 및 확산을 가속화하는 중요한 동력이다. 쿠버네티스(Kubernetes) 기반의 KubeEdge, OpenYurt와 같은 프로젝트들은 엣지 환경에서 컨테이너화된 애플리케이션을 배포하고 관리하는 데 활용되며, 개발자들이 엣지 솔루션을 보다 쉽게 구축하고 확장할 수 있도록 돕는다. 이러한 표준화와 오픈소스 노력은 엣지 컴퓨팅 생태계의 진입 장벽을 낮추고, 기술 혁신을 촉진하는 데 기여하고 있다.
보안 및 관리의 복잡성
엣지 컴퓨팅은 많은 이점을 제공하지만, 동시에 몇 가지 중요한 과제를 안고 있다. 가장 큰 과제 중 하나는 '보안(Security)'이다. 분산된 엣지 환경은 수많은 엣지 디바이스와 서버로 구성되어 있어, 중앙 집중식 클라우드 환경보다 공격 표면(Attack Surface)이 훨씬 넓다. 각 엣지 노드의 물리적 보안(도난, 훼손 등)과 네트워크 보안, 데이터 암호화, 접근 제어 등 다층적인 보안 전략이 요구된다. 또한, 엣지 디바이스는 컴퓨팅 자원이 제한적이고 다양한 운영체제를 사용하기 때문에 보안 패치 및 업데이트 관리가 복잡하다. 두 번째 과제는 '관리의 복잡성(Management Complexity)'이다. 수백, 수천 개의 엣지 노드를 원격으로 배포, 구성, 모니터링, 업데이트하는 것은 상당한 기술적 도전이다. 엣지 디바이스의 이질성, 네트워크 연결의 불안정성, 제한된 자원 등의 요인으로 인해 중앙에서 효율적으로 엣지 환경을 관리하는 통합된 솔루션이 필요하다. 이러한 보안 및 관리의 복잡성은 엣지 컴퓨팅 도입을 주저하게 만드는 주요 요인이며, 이를 해결하기 위한 기술 개발과 표준화 노력이 지속적으로 요구된다.
엣지 컴퓨팅의 미래 전망
엣지 컴퓨팅은 AI, 5G/6G, IoT 기술과 결합하여 미래 디지털 혁신의 핵심 동력으로 자리매김할 것이다.
엣지 AI의 진화 및 확산
엣지 AI는 미래 엣지 컴퓨팅의 핵심 동력이 될 것으로 예상된다. AI 모델의 추론 과정이 엣지에서 더욱 효율적으로 이루어지면서, 자율 시스템 및 지능형 디바이스의 핵심이 될 것이다. 현재는 비교적 경량화된 AI 모델이 엣지에서 주로 활용되지만, 향후에는 더욱 복잡하고 정교한 AI 모델이 엣지 디바이스 및 서버에서 직접 실행될 수 있도록 하드웨어(엣지 AI 칩)와 소프트웨어(경량화된 AI 프레임워크) 기술이 발전할 것이다. 이는 자율주행차의 완전 자율성 확보, 로봇의 실시간 상황 인지 및 판단 능력 향상, 스마트 의료 기기의 정밀 진단 등 다양한 분야에서 혁신적인 변화를 가져올 것이다. 엣지 AI는 단순히 데이터를 처리하는 것을 넘어, 현장에서 스스로 학습하고 진화하는 지능형 시스템을 구현하는 데 필수적인 요소로 자리매김할 것이다.
5G/6G 네트워크와의 시너지
5G 네트워크의 발전이 엣지 컴퓨팅의 확산을 가속화했다면, 미래의 6G 네트워크는 엣지 컴퓨팅과의 시너지를 통해 새로운 차원의 서비스를 가능하게 할 것이다. 6G는 5G를 뛰어넘는 초저지연(마이크로초 단위), 초고속(테라비트급), 초정밀 연결성을 제공할 것으로 예상된다. 이러한 6G의 특성은 엣지 컴퓨팅과 결합하여 '초실감(Immersive)' 서비스와 '지능형 자율(Intelligent Autonomous)' 시스템의 구현을 가능하게 할 것이다. 예를 들어, 6G와 엣지 컴퓨팅이 결합되면 홀로그램 통신, 촉각 인터넷, 완전 자율주행, 원격 로봇 수술 등이 현실화될 수 있다. 엣지 컴퓨팅은 6G 네트워크의 방대한 데이터를 처리하고, 6G는 엣지 노드 간의 초고속 연결을 제공함으로써, 두 기술은 상호 보완적으로 발전하며 미래 사회의 디지털 인프라를 혁신할 것이다.
산업 전반의 디지털 전환 가속화
엣지 컴퓨팅은 스마트시티, 스마트 팩토리, 자율주행 등 다양한 산업 분야에서 디지털 전환을 가속화하는 핵심 동력이 될 것으로 예상된다. 실시간 데이터 처리와 현장 기반의 의사결정 능력은 전통 산업의 운영 방식을 혁신하고, 새로운 비즈니스 모델을 창출할 것이다. 제조업은 예측 유지보수와 생산 최적화를 통해 효율성을 극대화하고, 헬스케어는 개인 맞춤형 의료 서비스와 원격 진료의 질을 향상시킬 것이다. 리테일은 고객 경험을 혁신하고 운영 비용을 절감하며, 물류 및 운송 분야는 자율 물류 시스템과 스마트 교통을 통해 효율성을 높일 것이다. 엣지 컴퓨팅은 데이터가 생성되는 모든 곳에서 가치를 창출하며, 산업 전반의 디지털 전환을 이끌고 사회 전반의 지능화를 촉진하는 핵심 기술로 자리매김할 것이다.
클라우드와의 조화로운 발전
엣지 컴퓨팅은 클라우드 컴퓨팅과 경쟁하기보다는 상호 보완적인 관계를 통해 데이터 중심 시대의 새로운 패러다임을 열어갈 것이다. 미래에는 엣지와 클라우드가 유기적으로 연결된 '분산 클라우드(Distributed Cloud)' 또는 '클라우드-엣지 연속체(Cloud-Edge Continuum)' 아키텍처가 보편화될 것이다. 엣지는 데이터의 1차 처리 및 실시간 반응을 담당하고, 클라우드는 대규모 데이터 분석, 장기 보관, AI 모델 학습 및 중앙 관리를 담당하는 역할 분담이 더욱 명확해질 것이다. 이러한 조화로운 발전은 기업이 데이터의 가치를 최대한 활용하고, 복잡한 비즈니스 요구사항에 유연하게 대응할 수 있도록 지원할 것이다. 엣지 컴퓨팅과 클라우드 컴퓨팅은 서로의 한계를 보완하며, 더욱 강력하고 효율적인 디지털 인프라를 구축하는 데 필수적인 요소로 함께 진화할 것이다.
참고 문헌
Statista. (2023). Number of IoT connected devices worldwide from 2019 to 2030. Retrieved from https://www.statista.com/statistics/1101444/iot-connected-devices-worldwide/
ITU. (2020). IMT-2020 (5G) requirements. Retrieved from https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2410-2019-PDF-E.pdf
Satyanarayanan, M. (2009). The emergence of cloudlets: Towards a 3-tier future. In Proceedings of the 2009 ACM workshop on Mobile cloud computing (pp. 1-4).
Cisco. (2014). Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are. White Paper. Retrieved from https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/fog-computing-white-paper.pdf
IDC. (2022). IDC FutureScape: Worldwide Edge Computing 2023 Predictions. Retrieved from https://www.idc.com/getdoc.jsp?containerId=US49982422
한국전자통신연구원 (ETRI). (2023). 스마트 제조 혁신을 위한 엣지 컴퓨팅 기술 동향.
Gartner. (2023). Gartner Forecasts Worldwide Edge Computing Spending to Reach $208 Billion in 2023. Retrieved from https://www.gartner.com/en/newsroom/press-releases/2023-01-26-gartner-forecasts-worldwide-edge-computing-spending-to-reach-208-billion-in-2023
IDC. (2024). Worldwide Edge Computing Spending Forecast to Reach $374 Billion in 2027. Retrieved from https://www.idc.com/getdoc.jsp?containerId=prUS51762224
LF Edge. (n.d.). About LF Edge. Retrieved from https://www.lfedge.org/about/
ETSI. (n.d.). Multi-access Edge Computing (MEC). Retrieved from https://www.etsi.org/technologies/multi-access-edge-computing
삼성전자. (2020). 6G 백서: The Next Hyper-Connected Experience for All. Retrieved from https://www.samsung.com/global/research/6g/6G_White_Paper_v1.0.pdf
분야에도 힘을 쏟고 있다. 특히 ‘XeSS3’라는 그래픽 기술을 통해 게임 화면을 더 부드럽고 선명하게 만들었다. 유명 게임 회사인 일렉트로닉 아츠(EA)도 앞으로 나올 게임에 이 기술을 쓰겠다고 발표했다. 이는 게임뿐만 아니라 영상을 만드는 콘텐츠 제작 시장에도 큰 변화를 줄 것으로 보인다.
인텔의 18A 공정 기반 제품은 다양한 폼팩터에 빠르게 확산될 가능성이 높다. 다니엘 로저스(Daniel Rogers)는 올해 하반기에 신제품에 대한 더 자세한 정보를 공개하겠다고 밝혔다.
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
