구글의 모회사인 알파벳(Alphabet)이 데이터센터와 청정 에너지 개발 업체인 ‘인터섹트(Intersect)’를 약 6조 9,825억 원(약 47억 5천만 달러)에 인수하기로 22일(현지 시각) 합의했다. 이번 인수는 인공지능(AI) 기술이 퍼지면서 데이터센터에 필요한 전력이 엄청나게 늘어나자, 이를 안정적으로 확보하기 위해 내린 결정이다.
AI 기술이 빠르게 발전하면서 전 세계적으로 전력 수요가 폭발하고 있다. AI 모델을 배우게 하고 운영하는 데는 엄청난 전기가 필요한데, 기존의 전력망으로는 이를 감당하기 어려운 상황이다. 이 때문에 구글
구글
목차
구글(Google) 개요
1. 개념 정의
1.1. 기업 정체성 및 사명
1.2. '구글'이라는 이름의 유래
2. 역사 및 발전 과정
2.1. 창립 및 초기 성장
2.2. 주요 서비스 확장 및 기업공개(IPO)
2.3. 알파벳(Alphabet Inc.) 설립
3. 핵심 기술 및 원리
3.1. 검색 엔진 알고리즘 (PageRank)
3.2. 광고 플랫폼 기술
3.3. 클라우드 인프라 및 데이터 처리
3.4. 인공지능(AI) 및 머신러닝
4. 주요 사업 분야 및 서비스
4.1. 검색 및 광고
4.2. 모바일 플랫폼 및 하드웨어
4.3. 클라우드 컴퓨팅 (Google Cloud Platform)
4.4. 콘텐츠 및 생산성 도구
5. 현재 동향
5.1. 생성형 AI 기술 경쟁 심화
5.2. 클라우드 시장 성장 및 AI 인프라 투자 확대
5.3. 글로벌 시장 전략 및 현지화 노력
6. 비판 및 논란
6.1. 반독점 및 시장 지배력 남용
6.2. 개인 정보 보호 문제
6.3. 기업 문화 및 윤리적 문제
7. 미래 전망
7.1. AI 중심의 혁신 가속화
7.2. 새로운 성장 동력 발굴
7.3. 규제 환경 변화 및 사회적 책임
구글(Google) 개요
구글은 전 세계 정보의 접근성을 높이고 유용하게 활용할 수 있도록 돕는 것을 사명으로 하는 미국의 다국적 기술 기업이다. 검색 엔진을 시작으로 모바일 운영체제, 클라우드 컴퓨팅, 인공지능 등 다양한 분야로 사업 영역을 확장하며 글로벌 IT 산업을 선도하고 있다. 구글은 디지털 시대의 정보 접근 방식을 혁신하고, 일상생활과 비즈니스 환경에 지대한 영향을 미치며 현대 사회의 필수적인 인프라로 자리매김했다.
1. 개념 정의
구글은 검색 엔진을 기반으로 광고, 클라우드, 모바일 운영체제 등 광범위한 서비스를 제공하는 글로벌 기술 기업이다. "전 세계의 모든 정보를 체계화하여 모든 사용자가 유익하게 사용할 수 있도록 한다"는 사명을 가지고 있다. 이러한 사명은 구글이 단순한 검색 서비스를 넘어 정보의 조직화와 접근성 향상에 얼마나 집중하는지를 보여준다.
1.1. 기업 정체성 및 사명
구글은 인터넷을 통해 정보를 공유하는 산업에서 가장 큰 기업 중 하나로, 전 세계 검색 시장의 90% 이상을 점유하고 있다. 이는 구글이 정보 탐색의 표준으로 인식되고 있음을 의미한다. 구글의 사명인 "전 세계의 정보를 조직화하여 보편적으로 접근 가능하고 유용하게 만드는 것(to organize the world's information and make it universally accessible and useful)"은 구글의 모든 제품과 서비스 개발의 근간이 된다. 이 사명은 단순히 정보를 나열하는 것을 넘어, 사용자가 필요로 하는 정보를 효과적으로 찾아 활용할 수 있도록 돕는다는 철학을 담고 있다.
1.2. '구글'이라는 이름의 유래
'구글'이라는 이름은 10의 100제곱을 의미하는 수학 용어 '구골(Googol)'에서 유래했다. 이는 창업자들이 방대한 웹 정보를 체계화하고 무한한 정보의 바다를 탐색하려는 목표를 반영한다. 이 이름은 당시 인터넷에 폭발적으로 증가하던 정보를 효율적으로 정리하겠다는 그들의 야심 찬 비전을 상징적으로 보여준다.
2. 역사 및 발전 과정
구글은 스탠퍼드 대학교의 연구 프로젝트에서 시작하여 현재의 글로벌 기술 기업으로 성장했다. 그 과정에서 혁신적인 기술 개발과 과감한 사업 확장을 통해 디지털 시대를 이끄는 핵심 주체로 부상했다.
2.1. 창립 및 초기 성장
1996년 래리 페이지(Larry Page)와 세르게이 브린(Sergey Brin)은 스탠퍼드 대학교에서 '백럽(BackRub)'이라는 검색 엔진 프로젝트를 시작했다. 이 프로젝트는 기존 검색 엔진들이 키워드 일치에만 의존하던 것과 달리, 웹페이지 간의 링크 구조를 분석하여 페이지의 중요도를 평가하는 'PageRank' 알고리즘을 개발했다. 1998년 9월 4일, 이들은 'Google Inc.'를 공식 창립했으며, PageRank를 기반으로 검색 정확도를 획기적으로 향상시켜 빠르게 사용자들의 신뢰를 얻었다. 초기에는 실리콘밸리의 한 차고에서 시작된 작은 스타트업이었으나, 그들의 혁신적인 접근 방식은 곧 인터넷 검색 시장의 판도를 바꾸기 시작했다.
2.2. 주요 서비스 확장 및 기업공개(IPO)
구글은 검색 엔진의 성공에 안주하지 않고 다양한 서비스로 사업 영역을 확장했다. 2000년에는 구글 애드워즈(Google AdWords, 현 Google Ads)를 출시하며 검색 기반의 타겟 광고 사업을 시작했고, 이는 구글의 주요 수익원이 되었다. 이후 2004년 Gmail을 선보여 이메일 서비스 시장에 혁신을 가져왔으며, 2005년에는 Google Maps를 출시하여 지리 정보 서비스의 새로운 기준을 제시했다. 2006년에는 세계 최대 동영상 플랫폼인 YouTube를 인수하여 콘텐츠 시장에서의 영향력을 확대했다. 2008년에는 모바일 운영체제 안드로이드(Android)를 도입하여 스마트폰 시장의 지배적인 플랫폼으로 성장시켰다. 이러한 서비스 확장은 2004년 8월 19일 나스닥(NASDAQ)에 상장된 구글의 기업 가치를 더욱 높이는 계기가 되었다.
2.3. 알파벳(Alphabet Inc.) 설립
2015년 8월, 구글은 지주회사인 알파벳(Alphabet Inc.)을 설립하며 기업 구조를 대대적으로 재편했다. 이는 구글의 핵심 인터넷 사업(검색, 광고, YouTube, Android 등)을 'Google'이라는 자회사로 유지하고, 자율주행차(Waymo), 생명과학(Verily, Calico), 인공지능 연구(DeepMind) 등 미래 성장 동력이 될 다양한 신사업을 독립적인 자회사로 분리 운영하기 위함이었다. 이러한 구조 개편은 각 사업 부문의 독립성과 투명성을 높이고, 혁신적인 프로젝트에 대한 투자를 가속화하기 위한 전략적 결정이었다. 래리 페이지와 세르게이 브린은 알파벳의 최고 경영진으로 이동하며 전체 그룹의 비전과 전략을 총괄하게 되었다.
3. 핵심 기술 및 원리
구글의 성공은 단순히 많은 서비스를 제공하는 것을 넘어, 그 기반에 깔린 혁신적인 기술 스택과 독자적인 알고리즘에 있다. 이들은 정보의 조직화, 효율적인 광고 시스템, 대규모 데이터 처리, 그리고 최첨단 인공지능 기술을 통해 구글의 경쟁 우위를 확립했다.
3.1. 검색 엔진 알고리즘 (PageRank)
구글 검색 엔진의 핵심은 'PageRank' 알고리즘이다. 이 알고리즘은 웹페이지의 중요도를 해당 페이지로 연결되는 백링크(다른 웹사이트로부터의 링크)의 수와 질을 분석하여 결정한다. 마치 학술 논문에서 인용이 많이 될수록 중요한 논문으로 평가받는 것과 유사하다. PageRank는 단순히 키워드 일치도를 넘어, 웹페이지의 권위와 신뢰도를 측정함으로써 사용자에게 더 관련성 높고 정확한 검색 결과를 제공하는 데 기여했다. 이는 초기 인터넷 검색의 질을 한 단계 끌어올린 혁신적인 기술로 평가받는다.
3.2. 광고 플랫폼 기술
구글 애드워즈(Google Ads)와 애드센스(AdSense)는 구글의 주요 수익원이며, 정교한 타겟 맞춤형 광고를 제공하는 기술이다. Google Ads는 광고주가 특정 검색어, 사용자 인구 통계, 관심사 등에 맞춰 광고를 노출할 수 있도록 돕는다. 반면 AdSense는 웹사이트 운영자가 자신의 페이지에 구글 광고를 게재하고 수익을 얻을 수 있도록 하는 플랫폼이다. 이 시스템은 사용자 데이터를 분석하고 검색어의 맥락을 이해하여 가장 관련성 높은 광고를 노출함으로써, 광고 효율성을 극대화하고 사용자 경험을 저해하지 않으면서도 높은 수익을 창출하는 비즈니스 모델을 구축했다.
3.3. 클라우드 인프라 및 데이터 처리
Google Cloud Platform(GCP)은 구글의 대규모 데이터 처리 및 저장 노하우를 기업 고객에게 제공하는 서비스이다. GCP는 전 세계에 분산된 데이터센터와 네트워크 인프라를 기반으로 컴퓨팅, 스토리지, 데이터베이스, 머신러닝 등 다양한 클라우드 서비스를 제공한다. 특히, '빅쿼리(BigQuery)'와 같은 데이터 웨어하우스는 페타바이트(petabyte) 규모의 데이터를 빠르고 효율적으로 분석할 수 있도록 지원하며, 기업들이 방대한 데이터를 통해 비즈니스 인사이트를 얻을 수 있게 돕는다. 이러한 클라우드 인프라는 구글 자체 서비스의 운영뿐만 아니라, 전 세계 기업들의 디지털 전환을 가속화하는 핵심 동력으로 작용하고 있다.
3.4. 인공지능(AI) 및 머신러닝
구글은 검색 결과의 개선, 추천 시스템, 자율주행, 음성 인식 등 다양한 서비스에 AI와 머신러닝 기술을 광범위하게 적용하고 있다. 특히, 딥러닝(Deep Learning) 기술을 활용하여 이미지 인식, 자연어 처리(Natural Language Processing, NLP) 분야에서 세계적인 수준의 기술력을 보유하고 있다. 최근에는 생성형 AI 모델인 '제미나이(Gemini)'를 통해 텍스트, 이미지, 오디오, 비디오 등 다양한 형태의 정보를 이해하고 생성하는 멀티모달(multimodal) AI 기술 혁신을 가속화하고 있다. 이러한 AI 기술은 구글 서비스의 개인화와 지능화를 담당하며 사용자 경험을 지속적으로 향상시키고 있다.
4. 주요 사업 분야 및 서비스
구글은 검색 엔진이라는 출발점을 넘어, 현재는 전 세계인의 일상과 비즈니스에 깊숙이 관여하는 광범위한 제품과 서비스를 제공하는 기술 대기업으로 성장했다.
4.1. 검색 및 광고
구글 검색은 전 세계에서 가장 많이 사용되는 검색 엔진으로, 2024년 10월 기준으로 전 세계 검색 시장의 약 91%를 점유하고 있다. 이는 구글이 정보 탐색의 사실상 표준임을 의미한다. 검색 광고(Google Ads)와 유튜브 광고 등 광고 플랫폼은 구글 매출의 대부분을 차지하는 핵심 사업이다. 2023년 알파벳의 총 매출 약 3,056억 달러 중 광고 매출이 약 2,378억 달러로, 전체 매출의 77% 이상을 차지했다. 이러한 광고 수익은 구글이 다양한 무료 서비스를 제공할 수 있는 기반이 된다.
4.2. 모바일 플랫폼 및 하드웨어
안드로이드(Android) 운영체제는 전 세계 스마트폰 시장을 지배하며, 2023년 기준 글로벌 모바일 운영체제 시장의 70% 이상을 차지한다. 안드로이드는 다양한 제조사에서 채택되어 전 세계 수십억 명의 사용자에게 구글 서비스를 제공하는 통로 역할을 한다. 또한, 구글은 자체 하드웨어 제품군도 확장하고 있다. 픽셀(Pixel) 스마트폰은 구글의 AI 기술과 안드로이드 운영체제를 최적화하여 보여주는 플래그십 기기이며, 네스트(Nest) 기기(스마트 스피커, 스마트 온도 조절기 등)는 스마트 홈 생태계를 구축하고 있다. 이 외에도 크롬캐스트(Chromecast), 핏빗(Fitbit) 등 다양한 기기를 통해 사용자 경험을 확장하고 있다.
4.3. 클라우드 컴퓨팅 (Google Cloud Platform)
Google Cloud Platform(GCP)은 기업 고객에게 컴퓨팅, 스토리지, 네트워킹, 데이터 분석, AI/머신러닝 등 광범위한 클라우드 서비스를 제공한다. 아마존 웹 서비스(AWS)와 마이크로소프트 애저(Azure)에 이어 글로벌 클라우드 시장에서 세 번째로 큰 점유율을 가지고 있으며, 2023년 4분기 기준 약 11%의 시장 점유율을 기록했다. GCP는 높은 성장률을 보이며 알파벳의 주요 성장 동력이 되고 있으며, 특히 AI 서비스 확산과 맞물려 데이터센터 증설 및 AI 인프라 확충에 대규모 투자를 진행하고 있다.
4.4. 콘텐츠 및 생산성 도구
유튜브(YouTube)는 세계 최대의 동영상 플랫폼으로, 매월 20억 명 이상의 활성 사용자가 방문하며 수십억 시간의 동영상을 시청한다. 유튜브는 엔터테인먼트를 넘어 교육, 뉴스, 커뮤니티 등 다양한 역할을 수행하며 디지털 콘텐츠 소비의 중심이 되었다. 또한, Gmail, Google Docs, Google Drive, Google Calendar 등으로 구성된 Google Workspace는 개인 및 기업의 생산성을 지원하는 주요 서비스이다. 이들은 클라우드 기반으로 언제 어디서든 문서 작성, 협업, 파일 저장 및 공유를 가능하게 하여 업무 효율성을 크게 향상시켰다.
5. 현재 동향
구글은 급변하는 기술 환경 속에서 특히 인공지능 기술의 발전을 중심으로 다양한 산업 분야에서 혁신을 주도하고 있다. 이는 구글의 미래 성장 동력을 확보하고 시장 리더십을 유지하기 위한 핵심 전략이다.
5.1. 생성형 AI 기술 경쟁 심화
구글은 챗GPT(ChatGPT)의 등장 이후 생성형 AI 기술 개발에 전사적인 역량을 집중하고 있다. 특히, 멀티모달 기능을 갖춘 '제미나이(Gemini)' 모델을 통해 텍스트, 이미지, 오디오, 비디오 등 다양한 형태의 정보를 통합적으로 이해하고 생성하는 능력을 선보였다. 구글은 제미나이를 검색, 클라우드, 안드로이드 등 모든 핵심 서비스에 통합하며 사용자 경험을 혁신하고 있다. 예를 들어, 구글 검색에 AI 오버뷰(AI Overviews) 기능을 도입하여 복잡한 질문에 대한 요약 정보를 제공하고, AI 모드를 통해 보다 대화형 검색 경험을 제공하는 등 AI 업계의 판도를 변화시키는 주요 동향을 이끌고 있다.
5.2. 클라우드 시장 성장 및 AI 인프라 투자 확대
Google Cloud는 높은 성장률을 보이며 알파벳의 주요 성장 동력이 되고 있다. 2023년 3분기에는 처음으로 분기 영업이익을 기록하며 수익성을 입증했다. AI 서비스 확산과 맞물려, 구글은 데이터센터 증설 및 AI 인프라 확충에 대규모 투자를 진행하고 있다. 이는 기업 고객들에게 고성능 AI 모델 학습 및 배포를 위한 강력한 컴퓨팅 자원을 제공하고, 자체 AI 서비스의 안정적인 운영을 보장하기 위함이다. 이러한 투자는 클라우드 시장에서의 경쟁력을 강화하고 미래 AI 시대의 핵심 인프라 제공자로서의 입지를 굳히는 전략이다.
5.3. 글로벌 시장 전략 및 현지화 노력
구글은 전 세계 각국 시장에서의 영향력을 확대하기 위해 현지화된 서비스를 제공하고 있으며, 특히 AI 기반 멀티모달 검색 기능 강화 등 사용자 경험 혁신에 주력하고 있다. 예를 들어, 특정 지역의 문화와 언어적 특성을 반영한 검색 결과를 제공하거나, 현지 콘텐츠 크리에이터를 지원하여 유튜브 생태계를 확장하는 식이다. 또한, 개발도상국 시장에서는 저렴한 스마트폰에서도 구글 서비스를 원활하게 이용할 수 있도록 경량화된 앱을 제공하는 등 다양한 현지화 전략을 펼치고 있다. 이는 글로벌 사용자 기반을 더욱 공고히 하고, 새로운 시장에서의 성장을 모색하기 위한 노력이다.
6. 비판 및 논란
구글은 혁신적인 기술과 서비스로 전 세계에 지대한 영향을 미치고 있지만, 그 막대한 시장 지배력과 데이터 활용 방식 등으로 인해 반독점, 개인 정보 보호, 기업 윤리 등 다양한 측면에서 비판과 논란에 직면해 있다.
6.1. 반독점 및 시장 지배력 남용
구글은 검색 및 온라인 광고 시장에서의 독점적 지위 남용 혐의로 전 세계 여러 국가에서 규제 당국의 조사를 받고 소송 및 과징금 부과를 경험했다. 2023년 9월, 미국 법무부(DOJ)는 구글이 검색 시장에서 불법적인 독점 행위를 했다며 반독점 소송을 제기했으며, 이는 20년 만에 미국 정부가 제기한 가장 큰 규모의 반독점 소송 중 하나이다. 유럽연합(EU) 역시 구글이 안드로이드 운영체제를 이용해 검색 시장 경쟁을 제한하고, 광고 기술 시장에서 독점적 지위를 남용했다며 수십억 유로의 과징금을 부과한 바 있다. 이러한 사례들은 구글의 시장 지배력이 혁신을 저해하고 공정한 경쟁을 방해할 수 있다는 우려를 반영한다.
6.2. 개인 정보 보호 문제
구글은 이용자 동의 없는 행태 정보 수집, 추적 기능 해제 후에도 데이터 수집 등 개인 정보 보호 위반으로 여러 차례 과징금 부과 및 배상 평결을 받았다. 2023년 12월, 프랑스 데이터 보호 기관(CNIL)은 구글이 사용자 동의 없이 광고 목적으로 개인 데이터를 수집했다며 1억 5천만 유로의 과징금을 부과했다. 또한, 구글은 공개적으로 사용 가능한 웹 데이터를 AI 모델 학습에 활용하겠다는 정책을 변경하며 개인 정보 보호 및 저작권 침해 가능성에 대한 논란을 야기했다. 이러한 논란은 구글이 방대한 사용자 데이터를 어떻게 수집하고 활용하는지에 대한 투명성과 윤리적 기준에 대한 사회적 요구가 커지고 있음을 보여준다.
6.3. 기업 문화 및 윤리적 문제
구글은 군사용 AI 기술 개발 참여(프로젝트 메이븐), 중국 정부 검열 협조(프로젝트 드래곤플라이), AI 기술 편향성 지적 직원에 대한 부당 해고 논란 등 기업 윤리 및 내부 소통 문제로 비판을 받았다. 특히, AI 윤리 연구원들의 해고는 구글의 AI 개발 방향과 윤리적 가치에 대한 심각한 의문을 제기했다. 이러한 사건들은 구글과 같은 거대 기술 기업이 기술 개발의 윤리적 책임과 사회적 영향력을 어떻게 관리해야 하는지에 대한 중요한 질문을 던진다.
7. 미래 전망
구글은 인공지능 기술을 중심으로 지속적인 혁신과 새로운 성장 동력 발굴을 통해 미래를 준비하고 있다. 급변하는 기술 환경과 사회적 요구 속에서 구글의 미래 전략은 AI 기술의 발전 방향과 밀접하게 연관되어 있다.
7.1. AI 중심의 혁신 가속화
AI는 구글의 모든 서비스에 통합되며, 검색 기능의 진화(AI Overviews, AI 모드), 새로운 AI 기반 서비스 개발 등 AI 중심의 혁신이 가속화될 것으로 전망된다. 구글은 검색 엔진을 단순한 정보 나열을 넘어, 사용자의 복잡한 질문에 대한 심층적인 답변과 개인화된 경험을 제공하는 'AI 비서' 형태로 발전시키려 하고 있다. 또한, 양자 컴퓨팅, 헬스케어(Verily, Calico), 로보틱스 등 신기술 분야에도 적극적으로 투자하며 장기적인 성장 동력을 확보하려 노력하고 있다. 이러한 AI 중심의 접근은 구글이 미래 기술 패러다임을 선도하려는 의지를 보여준다.
7.2. 새로운 성장 동력 발굴
클라우드 컴퓨팅과 AI 기술을 기반으로 기업용 솔루션 시장에서의 입지를 강화하고 있다. Google Cloud는 AI 기반 솔루션을 기업에 제공하며 엔터프라이즈 시장에서의 점유율을 확대하고 있으며, 이는 구글의 새로운 주요 수익원으로 자리매김하고 있다. 또한, 자율주행 기술 자회사인 웨이모(Waymo)는 미국 일부 도시에서 로보택시 서비스를 상용화하며 미래 모빌리티 시장에서의 잠재력을 보여주고 있다. 이러한 신사업들은 구글이 검색 및 광고 의존도를 줄이고 다각화된 수익 구조를 구축하는 데 기여할 것이다.
7.3. 규제 환경 변화 및 사회적 책임
각국 정부의 반독점 및 개인 정보 보호 규제 강화에 대응하고, AI의 윤리적 사용과 지속 가능한 기술 발전에 대한 사회적 책임을 다하는 것이 구글의 중요한 과제가 될 것이다. 구글은 규제 당국과의 협력을 통해 투명성을 높이고, AI 윤리 원칙을 수립하여 기술 개발 과정에 반영하는 노력을 지속해야 할 것이다. 또한, 디지털 격차 해소, 환경 보호 등 사회적 가치 실현에도 기여함으로써 기업 시민으로서의 역할을 다하는 것이 미래 구글의 지속 가능한 성장에 필수적인 요소로 작용할 것이다.
참고 문헌
StatCounter. (2024). Search Engine Market Share Worldwide. Available at: https://gs.statcounter.com/search-engine-market-share
Alphabet Inc. (2024). Q4 2023 Earnings Release. Available at: https://abc.xyz/investor/earnings/
Statista. (2023). Mobile operating systems' market share worldwide from January 2012 to July 2023. Available at: https://www.statista.com/statistics/266136/global-market-share-held-by-mobile-operating-systems/
Synergy Research Group. (2024). Cloud Market Share Q4 2023. Available at: https://www.srgresearch.com/articles/microsoft-and-google-gain-market-share-in-q4-cloud-market-growth-slows-to-19-for-full-year-2023
YouTube. (2023). YouTube for Press - Statistics. Available at: https://www.youtube.com/about/press/data/
Google. (2023). Introducing Gemini: Our largest and most capable AI model. Available at: https://blog.google/technology/ai/google-gemini-ai/
Google. (2024). What to know about AI Overviews and new AI experiences in Search. Available at: https://blog.google/products/search/ai-overviews-google-search-generative-ai/
Alphabet Inc. (2023). Q3 2023 Earnings Release. Available at: https://abc.xyz/investor/earnings/
U.S. Department of Justice. (2023). Justice Department Files Antitrust Lawsuit Against Google for Monopolizing Digital Advertising Technologies. Available at: https://www.justice.gov/opa/pr/justice-department-files-antitrust-lawsuit-against-google-monopolizing-digital-advertising
European Commission. (2018). Antitrust: Commission fines Google €4.34 billion for illegal practices regarding Android mobile devices. Available at: https://ec.europa.eu/commission/presscorner/detail/en/IP_18_4581
European Commission. (2021). Antitrust: Commission fines Google €2.42 billion for abusing dominance as search engine. Available at: https://ec.europa.eu/commission/presscorner/detail/en/IP_17_1784
CNIL. (2023). Cookies: the CNIL fines GOOGLE LLC and GOOGLE IRELAND LIMITED 150 million euros. Available at: https://www.cnil.fr/en/cookies-cnil-fines-google-llc-and-google-ireland-limited-150-million-euros
The Verge. (2021). Google fired another AI ethics researcher. Available at: https://www.theverge.com/2021/2/19/22292323/google-fired-another-ai-ethics-researcher-margaret-mitchell
Waymo. (2024). Where Waymo is available. Available at: https://waymo.com/where-we-are/
```
같은 빅테크 기업들은 재생 에너지나 핵에너지 등 다양한 에너지원을 직접 확보하는 전략으로 바꾸고 있으며, 이번 인수도 그 계획의 일환이다.
알파벳은 인터섹트가 앞으로 진행할 개발 프로젝트들을 사들이기로 했으며, 현금 지급과 빚을 대신 갚아주는 방식을 포함해 거래를 맺었다. 다만 현재 텍사스와 캘리포니아에서 운영 중이거나 짓고 있는 약 22조 500억 원(약 150억 달러) 규모의 자산은 이번 인수 대상에서 빠졌다. 알파벳은 이미 지난해 인터섹트에 약 1조 1,760억 원(약 8억 달러)을 투자한 바 있다. 이는 2030년까지 총 200억 달러 규모의 투자 목표의 일환이었다.
인터섹트는 태양광과 풍력 발전소, 그리고 대형 배터리 저장 시설이 데이터센터
데이터센터
목차
데이터센터란 무엇인가?
데이터센터의 역사와 발전
데이터센터의 핵심 구성 요소 및 기술
데이터센터의 종류 및 활용
데이터센터의 주요 설계 원칙 및 운영
데이터센터의 현재 동향 및 과제
미래 데이터센터의 모습
참고 문헌
데이터센터란 무엇인가?
데이터센터는 대량의 데이터를 저장, 처리, 관리하며 네트워크를 통해 전송하기 위한 전산 설비와 관련 인프라를 집적해 놓은 물리적 시설이다. 이는 서버, 스토리지, 네트워크 장비 등 IT 시스템에 필요한 컴퓨팅 인프라를 포함하며, 기업의 디지털 데이터를 저장하고 운영하는 핵심적인 물리적 시설 역할을 수행한다.
데이터센터의 중요성
현대 디지털 사회에서 데이터의 폭발적인 증가와 함께 웹 애플리케이션 실행, 고객 서비스 제공, 내부 애플리케이션 운영 등 IT 서비스의 안정적인 운영을 위한 핵심 인프라로서 그 중요성이 커지고 있다. 특히 클라우드 컴퓨팅, 빅데이터 분석, 인공지능과 같은 필수 서비스를 뒷받침하며, 기업의 정보 기반 의사결정, 트렌드 예측, 개인화된 고객 경험 제공을 가능하게 하는 기반 시설이다. 예를 들어, 2023년 기준 전 세계 데이터 생성량은 약 120 제타바이트(ZB)에 달하며, 이러한 방대한 데이터를 효율적으로 처리하고 저장하기 위해서는 데이터센터의 역할이 필수적이다. 데이터센터는 4차 산업혁명 시대의 핵심 동력인 인공지능, 사물 인터넷(IoT), 자율주행 등 첨단 기술의 구현을 위한 필수적인 기반 인프라로 기능한다.
데이터센터의 역사와 발전
데이터센터의 역사는 컴퓨팅 기술의 발전과 궤를 같이하며 진화해왔다.
데이터센터의 기원
데이터센터의 역사는 1940년대 미군의 ENIAC과 같은 초기 대형 컴퓨터 시스템을 보관하기 위한 전용 공간에서 시작된다. 이 시기의 컴퓨터는 방 하나를 가득 채울 정도로 거대했으며, 작동을 위해 막대한 전력과 냉각 시스템이 필요했다. 1950~60년대에는 '메인프레임'이라 불리는 대형 컴퓨터가 각 기업의 비즈니스 목적에 맞게 맞춤 제작되어 사용되었으며, 이들을 위한 전용 공간이 데이터센터의 초기 형태였다. 1990년대 마이크로컴퓨터의 등장으로 IT 운영에 필요한 공간이 크게 줄어들면서 '서버'라 불리는 장비들이 모인 공간을 '데이터센터'라고 칭하기 시작했다. 1990년대 말 닷컴 버블 시대에는 소규모 벤처 기업들이 독자적인 전산실을 운영하기 어려워지면서 IDC(Internet Data Center) 비즈니스가 태동하며 데이터센터가 본격적으로 등장하기 시작했다. IDC는 기업들이 서버를 직접 구매하고 관리하는 대신, 데이터센터 공간을 임대하여 서버를 운영할 수 있도록 지원하는 서비스였다.
현대 데이터센터의 요구사항
현대 데이터센터는 단순히 데이터를 저장하는 것을 넘어 고가용성, 확장성, 보안, 에너지 효율성 등 다양한 요구사항을 충족해야 한다. 특히 클라우드 컴퓨팅의 확산과 함께 온프레미스(On-premise) 물리적 서버 환경에서 멀티 클라우드 환경의 가상 인프라를 지원하는 형태로 발전했다. 이는 기업들이 IT 자원을 유연하게 사용하고 비용을 최적화할 수 있도록 지원하며, 급변하는 비즈니스 환경에 빠르게 대응할 수 있는 기반을 제공한다. 또한, 빅데이터, 인공지능, 사물 인터넷(IoT) 등 신기술의 등장으로 데이터 처리량이 기하급수적으로 증가하면서, 데이터센터는 더욱 높은 성능과 안정성을 요구받고 있다.
데이터센터의 핵심 구성 요소 및 기술
데이터센터는 IT 인프라를 안정적으로 운영하기 위한 다양한 하드웨어 및 시스템으로 구성된다.
하드웨어 인프라
서버, 스토리지, 네트워크 장비는 데이터센터를 구성하는 가장 기본적인 핵심 요소이다. 서버는 데이터 처리, 애플리케이션 실행, 웹 서비스 제공 등 컴퓨팅 작업을 수행하는 장비이며, 일반적으로 랙(rack)에 장착되어 집적된 형태로 운영된다. 스토리지는 데이터베이스, 파일, 백업 등 모든 디지털 정보를 저장하는 장치로, HDD(하드디스크 드라이브)나 SSD(솔리드 스테이트 드라이브) 기반의 다양한 시스템이 활용된다. 네트워크 장비는 서버 간 데이터 전달 및 외부 네트워크 연결을 담당하며, 라우터, 스위치, 방화벽 등이 이에 해당한다. 이러한 하드웨어 인프라는 데이터센터의 핵심 기능을 구현하는 물리적 기반을 이룬다.
전력 및 냉각 시스템
데이터센터의 안정적인 운영을 위해 무정전 전원 공급 장치(UPS), 백업 발전기 등 전력 하위 시스템이 필수적이다. UPS는 순간적인 정전이나 전압 변동으로부터 IT 장비를 보호하며, 백업 발전기는 장시간 정전 시 전력을 공급하여 서비스 중단을 방지한다. 또한, 서버에서 발생하는 막대한 열을 제어하기 위한 냉각 시스템은 데이터센터의 핵심 역량이며, 전체 전력 소비에서 큰 비중을 차지한다. 전통적인 공기 냉각 방식 외에도, 최근에는 서버를 액체에 직접 담가 냉각하는 액체 냉각(Liquid Cooling) 방식이나 칩에 직접 냉각수를 공급하는 직접 칩 냉각(Direct-to-Chip cooling) 방식이 고밀도 서버 환경에서 효율적인 대안으로 주목받고 있다. 이러한 냉각 기술은 데이터센터의 에너지 효율성을 결정하는 중요한 요소이다.
네트워크 인프라
데이터센터 내외부의 원활한 데이터 흐름을 위해 고속 데이터 전송과 외부 연결을 지원하는 네트워크 인프라가 구축된다. 라우터, 스위치, 방화벽 등 수많은 네트워킹 장비와 광케이블 등 케이블링이 필요하며, 이는 서버 간의 통신, 스토리지 접근, 그리고 외부 인터넷망과의 연결을 가능하게 한다. 특히 클라우드 서비스 및 대용량 데이터 처리 요구가 증가하면서, 100GbE(기가비트 이더넷) 이상의 고대역폭 네트워크와 초저지연 통신 기술이 중요해지고 있다. 소프트웨어 정의 네트워킹(SDN)과 네트워크 기능 가상화(NFV)와 같은 기술은 네트워크의 유연성과 관리 효율성을 높이는 데 기여한다.
보안 시스템
데이터센터의 보안은 물리적 보안과 네트워크 보안을 포함하는 다계층으로 구성된다. 물리적 보안은 CCTV, 생체 인식(지문, 홍채), 보안문, 출입 통제 시스템 등을 통해 인가되지 않은 인원의 접근을 차단한다. 네트워크 보안은 방화벽, 침입 방지 시스템(IPS), 침입 탐지 시스템(IDS), 데이터 암호화, 가상 사설망(VPN) 등을 활용하여 외부 위협으로부터 데이터를 보호하고 무단 접근을 방지한다. 최근에는 제로 트러스트(Zero Trust) 아키텍처와 같은 더욱 강화된 보안 모델이 도입되어, 모든 접근을 신뢰하지 않고 지속적으로 검증하는 방식으로 보안을 강화하고 있다.
데이터센터의 종류 및 활용
데이터센터는 크기, 관리 주체, 목적에 따라 다양하게 분류될 수 있으며, 각 유형은 특정 비즈니스 요구사항에 맞춰 최적화된다.
데이터센터 유형
엔터프라이즈 데이터센터: 특정 기업이 자체적으로 구축하고 운영하는 시설이다. 기업의 핵심 비즈니스 애플리케이션과 데이터를 직접 관리하며, 보안 및 규제 준수에 대한 통제권을 최대한 확보할 수 있는 장점이 있다. 초기 투자 비용과 운영 부담이 크지만, 맞춤형 인프라 구축이 가능하다.
코로케이션 데이터센터: 고객이 데이터센터의 일부 공간(랙 또는 구역)을 임대하여 자체 장비를 설치하고 운영하는 시설이다. 데이터센터 전문 기업이 전력, 냉각, 네트워크, 물리적 보안 등 기본적인 인프라를 제공하며, 고객은 IT 장비 관리와 소프트웨어 운영에 집중할 수 있다. 초기 투자 비용을 절감하고 전문적인 인프라 관리를 받을 수 있는 장점이 있다.
클라우드 데이터센터: AWS, Azure, Google Cloud 등 클라우드 서비스 제공업체가 운영하며, 서버, 스토리지, 네트워크 자원 등을 가상화하여 인터넷을 통해 서비스 형태로 제공한다. 사용자는 필요한 만큼의 자원을 유연하게 사용하고 사용량에 따라 비용을 지불한다. 확장성과 유연성이 뛰어나며, 전 세계 여러 리전에 분산되어 있어 재해 복구 및 고가용성 확보에 유리하다.
엣지 데이터센터: 데이터가 생성되는 위치(사용자, 장치)와 가까운 곳에 분산 설치되어, 저지연 애플리케이션과 실시간 데이터 분석/처리를 가능하게 한다. 중앙 데이터센터까지 데이터를 전송하는 데 필요한 시간과 대역폭을 줄여 자율주행차, 스마트 팩토리, 증강현실(AR)/가상현실(VR)과 같은 실시간 서비스에 필수적인 인프라로 부상하고 있다.
클라우드와 데이터센터의 관계
클라우드 서비스는 결국 데이터센터 위에서 가상화 기술과 자동화 플랫폼을 통해 제공되는 형태이다. 클라우드 서비스 제공업체는 대규모 데이터센터를 구축하고, 그 안에 수많은 서버, 스토리지, 네트워크 장비를 집적하여 가상화 기술로 논리적인 자원을 분할하고 사용자에게 제공한다. 따라서 클라우드 서비스의 발전은 데이터센터의 중요성을 더욱 높이고 있으며, 데이터센터는 클라우드 서비스의 가용성과 확장성을 극대화하는 핵심 인프라로 자리매김하고 있다. 클라우드 인프라는 물리적 데이터센터를 기반으로 하며, 데이터센터의 안정성과 성능이 곧 클라우드 서비스의 품질로 이어진다.
데이터센터의 주요 설계 원칙 및 운영
데이터센터는 24시간 365일 무중단 서비스를 제공해야 하므로, 설계 단계부터 엄격한 원칙과 효율적인 운영 방안이 고려된다.
고가용성 및 모듈성
데이터센터는 서비스 중단 없이 지속적인 운영을 보장하기 위해 중복 구성 요소와 다중 경로를 갖춘 고가용성 설계가 필수적이다. 이는 전력 공급, 냉각 시스템, 네트워크 연결 등 모든 핵심 인프라에 대해 이중화 또는 다중화 구성을 통해 단일 장애 지점(Single Point of Failure)을 제거하는 것을 의미한다. 예를 들어, UPS, 발전기, 네트워크 스위치 등을 이중으로 구성하여 한 시스템에 문제가 발생해도 다른 시스템이 즉시 기능을 인계받도록 한다. 또한, 유연한 확장을 위해 모듈형 설계를 채택하여 필요에 따라 용량을 쉽게 늘릴 수 있다. 모듈형 데이터센터는 표준화된 블록 형태로 구성되어, 증설이 필요할 때 해당 모듈을 추가하는 방식으로 빠르고 효율적인 확장이 가능하다. Uptime Institute의 티어(Tier) 등급 시스템은 데이터센터의 탄력성과 가용성을 평가하는 표준화된 방법을 제공하며, 티어 등급이 높을수록 안정성과 가용성이 높다. 티어 I은 기본적인 인프라를, 티어 IV는 완벽한 이중화 및 무중단 유지보수가 가능한 최고 수준의 가용성을 의미한다.
에너지 효율성 및 친환경
데이터센터는 엄청난 규모의 전력을 소비하므로, 에너지 효율성 확보는 매우 중요하다. 전 세계 데이터센터의 전력 소비량은 전체 전력 소비량의 약 1~2%를 차지하며, 이는 지속적으로 증가하는 추세이다. PUE(Power Usage Effectiveness)는 데이터센터의 에너지 효율성을 나타내는 지표로, IT 장비가 사용하는 전력량을 데이터센터 전체 전력 소비량으로 나눈 값이다. 1에 가까울수록 효율성이 좋으며, 이상적인 PUE는 1.0이다. 그린 데이터센터는 재생 에너지원 사용, 고효율 냉각 기술(액침 냉각 등), 서버 가상화, 에너지 관리 시스템(DCIM) 등을 통해 에너지 사용을 최적화하고 환경 영향을 최소화한다. 예를 들어, 구글은 2017년부터 100% 재생에너지로 데이터센터를 운영하고 있으며, PUE를 1.1 미만으로 유지하는 등 높은 에너지 효율을 달성하고 있다.
데이터센터 관리
데이터센터는 시설 관리, IT 인프라 관리, 용량 관리 등 효율적인 운영을 위한 다양한 관리 시스템과 프로세스를 필요로 한다. 시설 관리는 전력, 냉각, 물리적 보안 등 물리적 인프라를 모니터링하고 유지보수하는 것을 포함한다. IT 인프라 관리는 서버, 스토리지, 네트워크 장비의 성능을 최적화하고 장애를 예방하는 활동이다. 용량 관리는 현재 및 미래의 IT 자원 수요를 예측하여 필요한 하드웨어 및 소프트웨어 자원을 적시에 확보하고 배치하는 것을 의미한다. 이러한 관리 활동은 데이터센터 인프라 관리(DCIM) 솔루션을 통해 통합적으로 이루어지며, 24시간 365일 무중단 서비스를 제공하기 위한 핵심 요소이다.
데이터센터의 현재 동향 및 과제
데이터센터 산업은 기술 발전과 환경 변화에 따라 끊임없이 진화하고 있으며, 새로운 동향과 함께 다양한 과제에 직면해 있다.
지속 가능성 및 ESG
데이터센터의 급증하는 에너지 소비와 탄소 배출은 환경 문제와 직결되며, 지속 가능한 운영을 위한 ESG(환경·사회·지배구조) 경영의 중요성이 커지고 있다. 전 세계 데이터센터의 탄소 배출량은 항공 산업과 유사한 수준으로 추정되며, 이는 기후 변화에 대한 우려를 증폭시키고 있다. 재생에너지 사용 확대, 물 사용 효율성 개선(예: 건식 냉각 시스템 도입), 전자 폐기물 관리(재활용 및 재사용) 등은 지속 가능성을 위한 주요 과제이다. 많은 데이터센터 사업자들이 탄소 중립 목표를 설정하고 있으며, 한국에서도 2050 탄소중립 목표에 따라 데이터센터의 친환경 전환 노력이 가속화되고 있다.
AI 데이터센터의 부상
인공지능(AI) 기술의 발전과 함께 AI 워크로드 처리에 최적화된 AI 데이터센터의 수요가 급증하고 있다. AI 데이터센터는 기존 CPU 중심의 데이터센터와 달리, 대량의 GPU(그래픽 처리 장치) 기반 병렬 연산과 이를 위한 초고밀도 전력 및 냉각 시스템, 초저지연·고대역폭 네트워크가 핵심이다. GPU는 CPU보다 훨씬 많은 전력을 소비하고 더 많은 열을 발생시키므로, 기존 데이터센터 인프라로는 AI 워크로드를 효율적으로 처리하기 어렵다. 이에 따라 액침 냉각과 같은 차세대 냉각 기술과 고전압/고전류 전력 공급 시스템이 AI 데이터센터의 필수 요소로 부상하고 있다.
엣지 컴퓨팅과의 연계
데이터 발생 지점과 가까운 곳에서 데이터를 처리하는 엣지 데이터센터는 지연 시간을 최소화하고 네트워크 부하를 줄여 실시간 서비스의 품질을 향상시킨다. 이는 중앙 데이터센터의 부담을 덜고, 자율주행차, 스마트 시티, 산업 IoT와 같이 지연 시간에 민감한 애플리케이션에 필수적인 인프라로 부상하고 있다. 엣지 데이터센터는 중앙 데이터센터와 상호 보완적인 관계를 가지며, 데이터를 1차적으로 처리한 후 필요한 데이터만 중앙 클라우드로 전송하여 전체 시스템의 효율성을 높인다. 2024년 엣지 컴퓨팅 시장은 2023년 대비 16.4% 성장할 것으로 예상되며, 이는 엣지 데이터센터의 중요성을 더욱 부각시킨다.
미래 데이터센터의 모습
미래 데이터센터는 현재의 기술 동향을 바탕으로 더욱 지능적이고 효율적이며 분산된 형태로 진화할 것으로 전망된다.
AI 기반 지능형 데이터센터
미래 데이터센터는 인공지능이 운영 및 관리에 활용되어 효율성과 안정성을 극대화하는 지능형 시스템으로 진화할 것이다. AI는 데이터센터의 에너지 관리, 서버 자원 할당, 장애 예측 및 자동 복구, 보안 위협 감지 등에 적용되어 운영 비용을 절감하고 성능을 최적화할 것이다. 예를 들어, AI 기반 예측 유지보수는 장비 고장을 사전에 감지하여 서비스 중단을 최소화하고, AI 기반 자원 스케줄링은 워크로드에 따라 컴퓨팅 자원을 동적으로 할당하여 효율을 극대화할 수 있다.
차세대 냉각 기술
AI 데이터센터의 고밀도, 고발열 환경에 대응하기 위해 액침 냉각(Liquid Cooling), 직접 칩 냉각(Direct-to-Chip cooling) 등 혁신적인 냉각 기술의 중요성이 더욱 커지고 있다. 액침 냉각은 서버 전체를 비전도성 액체에 담가 냉각하는 방식으로, 공기 냉각보다 훨씬 높은 효율로 열을 제거할 수 있다. 직접 칩 냉각은 CPU나 GPU와 같은 고발열 칩에 직접 냉각수를 공급하여 열을 식히는 방식이다. 이러한 기술들은 냉각 효율을 높여 데이터센터의 PUE를 획기적으로 개선하고 전력 비용을 절감하며, 데이터센터 운영의 지속 가능성을 확보하는 데 기여할 것이다. 2030년까지 액침 냉각 시장은 연평균 25% 이상 성장할 것으로 예측된다.
분산 및 초연결 데이터센터
클라우드 컴퓨팅, 사물 인터넷(IoT), 5G/6G 통신 기술의 발전과 함께 데이터센터는 지리적으로 분산되고 서로 긴밀하게 연결된 초연결 인프라로 발전할 것이다. 엣지 데이터센터와 중앙 데이터센터가 유기적으로 연동되어 사용자에게 더욱 빠르고 안정적인 서비스를 제공하는 하이브리드 클라우드 아키텍처가 보편화될 것으로 전망된다. 이는 데이터가 생성되는 곳에서부터 중앙 클라우드까지 끊김 없이 연결되어, 실시간 데이터 처리와 분석을 가능하게 할 것이다. 또한, 양자 컴퓨팅과 같은 차세대 컴퓨팅 기술이 데이터센터에 통합되어, 현재의 컴퓨팅으로는 불가능한 복잡한 문제 해결 능력을 제공할 수도 있다.
참고 문헌
Statista. (2023). Volume of data created, captured, copied, and consumed worldwide from 2010 to 2027. Retrieved from [https://www.statista.com/statistics/871513/worldwide-data-created/](https://www.statista.com/statistics/871513/worldwide-data-created/)
IDC. (2023). The Global Datasphere and Data Storage. Retrieved from [https://www.idc.com/getdoc.jsp?containerId=US49019722](https://www.idc.com/getdoc.jsp?containerId=US49019722)
과학기술정보통신부. (2023). 데이터센터 산업 발전방안. Retrieved from [https://www.msit.go.kr/web/msitContents/contentsView.do?cateId=1000000000000&artId=1711204](https://www.msit.go.kr/web/msitContents/contentsView.do?cateId=1000000000000&artId=1711204)
Data Center Knowledge. (2022). The History of the Data Center. Retrieved from [https://www.datacenterknowledge.com/data-center-industry-perspectives/history-data-center](https://www.datacenterknowledge.com/data-center-industry-perspectives/history-data-center)
Gartner. (2023). Top Strategic Technology Trends for 2024: Cloud-Native Platforms. Retrieved from [https://www.gartner.com/en/articles/top-strategic-technology-trends-for-2024](https://www.gartner.com/en/articles/top-strategic-technology-trends-for-2024)
Schneider Electric. (2023). Liquid Cooling for Data Centers: A Comprehensive Guide. Retrieved from [https://www.se.com/ww/en/work/solutions/data-centers/liquid-cooling/](https://www.se.com/ww/en/work/solutions/data-centers/liquid-cooling/)
Cisco. (2023). Data Center Networking Solutions. Retrieved from [https://www.cisco.com/c/en/us/solutions/data-center-virtualization/data-center-networking.html](https://www.cisco.com/c/en/us/solutions/data-center-virtualization/data-center-networking.html)
Palo Alto Networks. (2023). What is Zero Trust? Retrieved from [https://www.paloaltonetworks.com/cybersecurity/what-is-zero-trust](https://www.paloaltonetworks.com/cybersecurity/what-is-zero-trust)
Dell Technologies. (2023). What is Edge Computing? Retrieved from [https://www.dell.com/en-us/what-is-edge-computing](https://www.dell.com/en-us/what-is-edge-computing)
AWS. (2023). AWS Global Infrastructure. Retrieved from [https://aws.amazon.com/about-aws/global-infrastructure/](https://aws.amazon.com/about-aws/global-infrastructure/)
Uptime Institute. (2023). Tier Standard: Topology. Retrieved from [https://uptimeinstitute.com/tier-standard-topology](https://uptimeinstitute.com/tier-standard-topology)
International Energy Agency (IEA). (2023). Data Centres and Data Transmission Networks. Retrieved from [https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks](https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks)
Google. (2023). Our commitment to sustainability in the cloud. Retrieved from [https://cloud.google.com/sustainability](https://cloud.google.com/sustainability)
Google. (2023). How we're building a more sustainable future. Retrieved from [https://sustainability.google/progress/](https://sustainability.google/progress/)
Vertiv. (2023). What is DCIM? Retrieved from [https://www.vertiv.com/en-us/products/software/data-center-infrastructure-management-dcim/what-is-dcim/](https://www.vertiv.com/en-us/products/software/data-center-infrastructure-management-dcim/what-is-dcim/)
Nature. (2023). The carbon footprint of the internet. Retrieved from [https://www.nature.com/articles/d41586-023-00702-x](https://www.nature.com/articles/d41586-023-00702-x)
환경부. (2023). 2050 탄소중립 시나리오. Retrieved from [https://www.me.go.kr/home/web/policy_data/read.do?menuId=10257&idx=1661](https://www.me.go.kr/home/web/policy_data/read.do?menuId=10257&idx=1661)
NVIDIA. (2023). Accelerated Computing for AI Data Centers. Retrieved from [https://www.nvidia.com/en-us/data-center/ai-data-center/](https://www.nvidia.com/en-us/data-center/ai-data-center/)
Gartner. (2023). Gartner Forecasts Worldwide Edge Computing Market to Grow 16.4% in 2024. Retrieved from [https://www.gartner.com/en/newsroom/press-releases/2023-10-25-gartner-forecasts-worldwide-edge-computing-market-to-grow-16-4-percent-in-2024](https://www.gartner.com/en/newsroom/press-releases/2023-10-25-gartner-forecasts-worldwide-edge-computing-market-to-grow-16-4-percent-in-2024)
IBM. (2023). AI in the data center: How AI is transforming data center operations. Retrieved from [https://www.ibm.com/blogs/research/2023/10/ai-in-the-data-center/](https://www.ibm.com/blogs/research/2023/10/ai-in-the-data-center/)
MarketsandMarkets. (2023). Liquid Cooling Market for Data Center by Component, Solution, End User, and Region - Global Forecast to 2030. Retrieved from [https://www.marketsandmarkets.com/Market-Reports/data-center-liquid-cooling-market-10006764.html](https://www.marketsandmarkets.com/Market-Reports/data-center-liquid-cooling-market-10006764.html)
Deloitte. (2023). Quantum computing: The next frontier for data centers. Retrieved from [https://www2.deloitte.com/us/en/insights/industry/technology/quantum-computing-data-centers.html](https://www2.deloitte.com/us/en/insights/industry/technology/quantum-computing-data-centers.html)
바로 옆에 붙어 있는 형태인 ‘데이터 파크’를 개발하고 있다. 이렇게 에너지를 직접 만들어 쓰는 시스템을 갖추면 외부 전력망에 의존하지 않아도 되고, 전기를 보내는 과정에서 사라지는 에너지도 줄일 수 있다. 특히 에너지를 먼저 확보하고 데이터센터를 계획하는 방식을 통해 전력 부족 걱정 없이 빠르게 시설을 가동할 수 있다.
인수 이후에도 인터섹트는 독립 브랜드로 운영되며, 최고경영자(CEO) 셸던 킴버(Sheldon Kimber)가 계속 이끌 예정이다. 인터섹트는 2028년까지 10.8기가와트(GW) 이상의 전력을 생산할 계획인데, 이는 미국의 거대한 후버 댐이 만드는 전기량의 20배나 되는 엄청난 규모다. 일부 데이터파크는 2026년 말부터 운영을 시작하고, 2027년까지 완공될 예정이다.
이번 인수로 알파벳은 AI 시설 운영에 꼭 필요한 전기를 빠르고 안정적으로 공급받을 수 있게 되었다. AI 경쟁이 치열해지는 상황에서 전력을 미리 확보하는 것은 매우 중요한 경쟁력이 된다. 또한 에너지와 데이터센터를 하나로 묶어 설계하는 방식이 업계의 새로운 기준이 될 가능성도 커졌다.
구글과 알파벳의 최고경영자 순다르 피차이(Sundar Pichai)는 “인터섹트는 데이터센터 부하 증가에 맞춰 발전 설비를 보다 신속하고 유연하게 구축하도록 도울 것”이라고 강조했다.
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.


