Qwen: 알리바바 클라우드의 혁신적인 대규모 AI 모델 시리즈 해설
목차
- Qwen의 개념 정의
- Qwen의 역사 및 발전 과정
- Qwen의 핵심 기술 및 아키텍처
3.1. Qwen 대규모 언어 모델 (LLM) 시리즈
3.2. Qwen 멀티모달 모델 (LMM) 시리즈
3.3. Qwen-Agent 프레임워크 - Qwen의 주요 활용 사례 및 응용 분야
4.1. 챗봇 및 대화형 AI
4.2. 콘텐츠 생성 및 편집
4.3. 코드 생성 및 분석
4.4. 다국어 처리 및 번역
4.5. 에이전트 기반 애플리케이션 개발 - Qwen의 현재 동향
5.1. 오픈소스 생태계 확장
5.2. 성능 벤치마크 및 경쟁 구도
5.3. 지속적인 버전 업데이트 및 특화 모델 출시 - Qwen의 미래 전망
6.1. AI 기술의 민주화 기여
6.2. 범용 인공지능(AGI) 및 초지능(ASI)으로의 발전
6.3. 멀티모달 및 에이전트 기능 강화
6.4. 산업 전반의 활용 확대 - 참고 문헌
1. Qwen의 개념 정의
Qwen은 알리바바 클라우드(Alibaba Cloud)가 개발한 선도적인 대규모 언어 모델(LLM, Large Language Model) 및 멀티모달 모델(LMM, Large Multimodal Model) 계열이다. 이 모델은 자연어 이해(NLU), 텍스트 생성, 시각 및 오디오 정보 이해, 도구 사용, 그리고 복잡한 AI 에이전트 역할 수행 등 광범위한 인공지능 기능을 제공한다. 'Tongyi Qianwen (通义千问)'으로도 알려져 있으며, 이는 중국어로 "의미를 이해하고 천 가지 질문에 답한다"는 뜻을 내포하고 있어, 모델의 지식과 이해력을 강조한다.
Qwen은 단순히 텍스트를 생성하는 것을 넘어, 다양한 형태의 데이터를 처리하고 추론하며, 실제 세계의 문제 해결에 기여할 수 있는 범용 인공지능(AGI)을 지향하고 있다. 이는 사용자가 복잡한 질문을 하거나, 특정 작업을 지시할 때, 마치 인간처럼 상황을 이해하고 적절한 답변이나 해결책을 제시하는 것을 목표로 한다.
2. Qwen의 역사 및 발전 과정
Qwen의 역사는 2023년 4월, 알리바바 클라우드가 'Tongyi Qianwen'이라는 이름으로 베타 버전을 처음 공개하면서 시작되었다. 당시 이 모델은 중국어와 영어 등 주요 언어에 대한 강력한 처리 능력을 선보이며 주목받았다. 이후 2023년 9월, 중국 정부의 규제 승인을 거쳐 대중에게 정식으로 공개되었으며, 이는 중국 내에서 대규모 언어 모델이 상업적으로 활용될 수 있음을 알리는 중요한 이정표가 되었다.
Qwen은 초기 모델인 Qwen-1부터 시작하여, Qwen-1.5, Qwen-2, Qwen-2.5, Qwen-3 등 여러 세대에 걸쳐 지속적으로 발전해왔다. 각 세대별 업데이트는 주로 다음과 같은 측면에서 상당한 개선을 이루었다.
- 추론 능력: 복잡한 문제 해결 및 논리적 사고 능력이 향상되었다.
- 다국어 지원: 지원하는 언어의 수가 확대되고 각 언어에 대한 이해도가 깊어졌다.
- 컨텍스트 길이: 모델이 한 번에 처리하고 기억할 수 있는 정보의 양이 늘어나, 장문의 문서나 대화 기록을 더 효과적으로 다룰 수 있게 되었다.
- 에이전트 기능: 외부 도구를 활용하거나 다단계 계획을 수립하여 실제 작업을 수행하는 능력이 강화되었다.
특히, Qwen-1.5는 2024년 초에 출시되어 다양한 크기의 모델과 향상된 성능을 제공했으며, Qwen-2는 더욱 강력한 추론 능력과 다국어 지원을 특징으로 한다. 최신 버전인 Qwen-3는 Mixture-of-Experts (MoE) 아키텍처를 도입하고, 텍스트, 이미지, 오디오, 비디오를 통합 처리하는 Qwen3-Omni와 같은 멀티모달 기능을 강화하며 범용 인공지능(AGI)으로의 도약을 목표로 하고 있다. 이러한 지속적인 발전은 Qwen이 글로벌 AI 시장에서 주요 경쟁자로 자리매김하는 데 기여하고 있다.
3. Qwen의 핵심 기술 및 아키텍처
Qwen은 최첨단 AI 기술을 기반으로 다양한 모델 라인업을 구축하여 광범위한 기능을 제공한다. 이는 크게 대규모 언어 모델(LLM) 시리즈, 멀티모달 모델(LMM) 시리즈, 그리고 에이전트 프레임워크로 나눌 수 있다.
3.1. Qwen 대규모 언어 모델 (LLM) 시리즈
Qwen LLM 시리즈는 트랜스포머(Transformer) 기반 아키텍처와 고급 어텐션(Attention) 메커니즘을 특징으로 한다. 트랜스포머는 입력 시퀀스의 각 요소 간의 관계를 병렬적으로 처리하여 장거리 의존성을 효과적으로 학습하는 신경망 구조이다. 어텐션 메커니즘은 입력 시퀀스에서 중요한 부분에 더 집중하여 정보를 처리함으로써 모델의 이해도를 높인다.
특히, 최신 모델인 Qwen-3에서는 Mixture-of-Experts (MoE) 아키텍처를 도입하여 효율성과 성능을 극대화했다. MoE는 여러 개의 작은 "전문가" 신경망을 병렬로 배치하고, 입력 데이터에 따라 가장 적합한 전문가를 선택하여 계산을 수행하는 방식이다. 이는 전체 모델의 파라미터 수는 매우 크지만, 실제 추론 시에는 일부 전문가만 활성화되므로 계산 효율성을 높이면서도 다양한 유형의 작업에 유연하게 대응할 수 있게 한다. 예를 들어, 특정 언어 번역에는 해당 언어 전문가가, 코딩 작업에는 코딩 전문가가 활성화되는 식이다.
Qwen LLM 시리즈는 0.6B(6억)부터 235B(2,350억)까지 다양한 파라미터 크기의 모델을 제공하여 사용자의 컴퓨팅 환경과 목적에 맞춰 유연하게 선택할 수 있다. 작은 모델은 경량화된 환경에서 빠르게 작동하며, 큰 모델은 더 높은 성능과 복잡한 추론 능력을 제공한다.
또한, Qwen은 '사고 모드(thinking mode)'와 '비사고 모드(non-thinking mode)'를 전환하여 복잡한 추론과 효율적인 일반 대화를 유연하게 처리한다. 사고 모드는 복잡한 문제 해결을 위해 여러 단계를 거쳐 논리적으로 사고하는 과정을 포함하며, 비사고 모드는 일상적인 질문에 빠르고 간결하게 답변하는 데 사용된다. 이러한 유연성은 모델이 다양한 사용자 요구에 최적화된 방식으로 반응하도록 돕는다.
Qwen 모델은 최대 1M(100만) 토큰까지 확장 가능한 긴 컨텍스트 길이를 지원한다. 이는 대규모 문서 요약, 장문의 대화 기록 유지, 복잡한 코드 분석 등 방대한 양의 정보를 한 번에 처리해야 하는 작업에서 뛰어난 성능을 발휘하게 한다. 예를 들어, 수백 페이지 분량의 보고서를 한 번에 입력하여 분석하거나, 장시간 진행된 회의록을 바탕으로 핵심 내용을 요약하는 것이 가능하다.
3.2. Qwen 멀티모달 모델 (LMM) 시리즈
Qwen의 멀티모달 모델(LMM) 시리즈는 텍스트를 넘어 이미지, 오디오, 비디오 등 다양한 형태의 데이터를 이해하고 생성하는 능력을 갖추고 있다.
Qwen-VL (Vision-Language) 시리즈: 텍스트와 이미지를 동시에 처리하는 비전-언어 모델이다. 이는 비전 트랜스포머(Vision Transformer, ViT)와 LLM을 결합한 아키텍처를 사용한다. ViT는 이미지를 패치(patch) 단위로 분할하여 트랜스포머의 입력으로 사용함으로써 이미지 내의 장거리 의존성을 효과적으로 학습한다. Qwen-VL은 이미지 내용에 대한 질문에 답변하거나, 이미지 캡션을 생성하고, 이미지 내의 특정 객체를 식별하는 등 다양한 시각-언어 작업을 수행할 수 있다. 예를 들어, "이 사진에 무엇이 있나요?"라고 물으면 이미지 속 사물들을 설명해주는 식이다.
Qwen-Image: 이미지 생성 및 편집에 특화된 모델로, MMDiT(Multimodal Diffusion Transformer) 모델을 기반으로 한다. MMDiT는 확산 모델(Diffusion Model)의 원리를 트랜스포머 아키텍처와 결합하여 고품질의 이미지를 생성하고 편집하는 데 사용된다. Qwen-Image는 텍스트 프롬프트에 따라 사실적인 이미지를 생성하거나, 기존 이미지를 특정 스타일로 변환하고, 이미지 내의 요소를 추가하거나 제거하는 등 고급 텍스트 렌더링 및 이미지 이해 기능을 제공한다.
Qwen-Omni 시리즈: 텍스트, 이미지, 오디오, 비디오를 모두 처리하고 실시간 오디오 답변까지 생성하는 통합 멀티모달 기능을 갖춘 최신 모델이다. Qwen3-Omni와 같은 모델은 여러 모달리티 간의 복잡한 관계를 이해하고, 이를 바탕으로 더욱 풍부하고 상호작용적인 경험을 제공한다. 예를 들어, 사용자가 비디오를 보여주면서 특정 장면에 대해 질문하면, 모델이 비디오 내용을 분석하여 텍스트로 답변하고, 필요에 따라 음성으로도 응답할 수 있다.
Qwen-Audio 및 Qwen-Math: 이 외에도 Qwen은 특정 분야에 특화된 모델들을 개발하고 있다. Qwen-Audio는 오디오 데이터의 이해 및 생성에, Qwen-Math는 복잡한 수학 문제 해결 및 추론에 특화되어 있어, 각 분야에서 높은 성능을 발휘한다.
3.3. Qwen-Agent 프레임워크
Qwen-Agent는 Qwen 모델을 활용한 애플리케이션 개발을 지원하는 프레임워크로, 모델이 실제 환경에서 자율적인 에이전트처럼 작동하도록 돕는다. 이 프레임워크는 다음과 같은 복합적인 에이전트 기능을 지원한다.
- 도구 통합(함수 호출): Qwen 모델이 외부 API, 데이터베이스, 웹 검색 엔진 등 다양한 도구를 호출하고 활용할 수 있도록 한다. 예를 들어, 사용자가 "오늘 날씨는 어때?"라고 물으면, Qwen-Agent는 날씨 API를 호출하여 최신 정보를 가져와 답변한다.
- 다단계 계획 수립: 복잡한 작업을 작은 단계로 분해하고, 각 단계를 순차적으로 실행하여 목표를 달성하는 능력을 제공한다. 이는 마치 사람이 복잡한 프로젝트를 계획하고 실행하는 방식과 유사하다.
- 장기 메모리 처리: 이전 대화 내용이나 학습된 지식을 장기적으로 기억하고 활용하여, 시간이 지남에 따라 사용자의 선호도나 특정 도메인 지식을 축적하고 더욱 개인화된 서비스를 제공할 수 있다.
이러한 기능들을 통해 Qwen-Agent는 단순한 질의응답을 넘어, 실제 환경에서 복잡한 작업을 자동화하고 지능적인 의사결정을 내릴 수 있는 AI 에이전트 개발을 가능하게 한다.
4. Qwen의 주요 활용 사례 및 응용 분야
Qwen은 그 강력한 기능들을 바탕으로 다양한 산업 및 일상생활 분야에서 혁신적인 솔루션을 제공하고 있다.
4.1. 챗봇 및 대화형 AI
Qwen Chat은 Qwen 시리즈 모델 기반의 대표적인 AI 비서이다. 이는 사용자의 질문에 답변하고, 창의적인 글쓰기를 돕고, 정보 검색을 수행하며, 복잡한 문제 해결에 협력하는 등 광범위한 대화형 작업을 수행한다. 예를 들어, 사용자가 특정 주제에 대한 정보를 요청하거나, 이메일 초안 작성을 의뢰하거나, 복잡한 개념을 설명해달라고 요청할 때, Qwen Chat은 자연스럽고 유용한 답변을 제공한다. 기업들은 Qwen Chat을 고객 서비스 챗봇, 사내 지식 관리 시스템, 개인 비서 등으로 활용하여 운영 효율성을 높이고 사용자 경험을 개선할 수 있다.
4.2. 콘텐츠 생성 및 편집
Qwen은 텍스트, 이미지, 비디오 등 다양한 형태의 콘텐츠를 생성하고 편집하는 데 활용된다.
- 텍스트 기반 콘텐츠: 자동 스크립트 생성, 기사 작성, 마케팅 문구 개발, 소설 초안 작성 등 창의적인 글쓰기 작업을 지원한다. 예를 들어, 특정 키워드를 입력하면 관련 블로그 게시물이나 소셜 미디어 게시물을 자동으로 생성할 수 있다.
- 이미지 콘텐츠: Qwen-Image와 같은 모델은 텍스트 프롬프트에 따라 고품질의 이미지를 생성하거나, 기존 이미지를 특정 스타일로 변환하고 편집하는 데 사용된다. 이는 광고, 디자인, 미디어 산업에서 시각 콘텐츠 제작 워크플로우를 혁신할 수 있다.
- 동영상 콘텐츠: 동영상 스크립트 작성, 장면 구성 제안, 심지어는 간단한 동영상 편집 워크플로우 개선에도 기여하여, 콘텐츠 제작 시간을 단축하고 창의성을 증진시킨다.
4.3. 코드 생성 및 분석
Qwen-Coder와 같은 전문 모델들은 개발자들을 위한 강력한 도구로 활용된다. 이 모델들은 다양한 프로그래밍 언어(Python, Java, C++, JavaScript 등)를 지원하며 다음과 같은 작업을 돕는다.
- 코드 생성: 자연어 설명에 따라 코드를 자동으로 생성하여 개발 시간을 단축한다. 예를 들어, "파이썬으로 두 숫자를 더하는 함수를 만들어줘"라고 요청하면 해당 코드를 즉시 제공한다.
- 문법 이해 및 오류 수정: 기존 코드의 문법적 오류를 찾아내고 수정 제안을 하거나, 코드의 특정 부분이 어떤 기능을 하는지 설명해준다.
- 데이터 분석 및 시각화: 데이터셋을 분석하고 통계적 인사이트를 도출하며, 결과를 시각화하는 코드를 생성하여 데이터 과학자들의 작업을 효율적으로 돕는다.
이는 소프트웨어 개발 프로세스를 가속화하고 코드 품질을 향상시키는 데 크게 기여한다.
4.4. 다국어 처리 및 번역
Qwen은 119개 이상의 언어 및 방언을 지원하는 뛰어난 다국어 처리 능력을 자랑한다. 이러한 능력은 글로벌 비즈니스, 학술 연구, 국제 커뮤니케이션 분야에서 매우 유용하게 활용된다.
- 실시간 번역: 다양한 언어 간의 텍스트를 정확하게 번역하여 언어 장벽을 허문다.
- 다국어 콘텐츠 생성: 여러 언어로 된 마케팅 자료, 보고서, 웹사이트 콘텐츠 등을 효율적으로 생성할 수 있다.
- 교차 문화 커뮤니케이션: 특정 문화적 뉘앙스를 이해하고 반영하여 더욱 자연스러운 다국어 소통을 가능하게 한다.
4.5. 에이전트 기반 애플리케이션 개발
Qwen-Agent 프레임워크를 활용하면 복잡하고 자율적인 에이전트 기반 애플리케이션을 구축할 수 있다.
- 웹 검색 도우미: 사용자의 질문에 따라 웹을 검색하고 관련 정보를 요약하여 제공한다.
- 코드 인터프리터: 복잡한 데이터 분석이나 시뮬레이션을 위해 코드를 실행하고 결과를 해석한다.
- 사용자 맞춤형 AI 비서: 개인의 일정 관리, 정보 습득, 작업 자동화 등 다양한 개인화된 서비스를 제공한다.
- 자동화된 비즈니스 프로세스: 고객 문의 처리, 데이터 입력, 보고서 생성 등 반복적인 비즈니스 작업을 자동화하여 생산성을 향상시킨다.
이러한 에이전트들은 특정 도메인 지식을 학습하고 외부 도구와 상호작용하며, 다단계 작업을 스스로 계획하고 실행함으로써 실제 문제를 해결하는 데 중요한 역할을 한다.
5. Qwen의 현재 동향
Qwen은 글로벌 AI 시장에서 중요한 위치를 차지하며 활발하게 발전하고 있으며, 그 동향은 다음과 같다.
5.1. 오픈소스 생태계 확장
알리바바 클라우드는 AI 기술의 민주화에 기여하기 위해 많은 Qwen 모델들을 Apache 2.0 라이선스 하에 오픈 웨이트(open-weight) 모델로 배포하고 있다. 이는 연구자 및 개발자들이 Qwen 모델의 가중치(weights)에 직접 접근하여 모델을 수정하고, 자체 애플리케이션에 통합하며, 상업적으로 활용할 수 있도록 허용한다.
Qwen 모델들은 Hugging Face, ModelScope, GitHub 등 주요 AI 모델 공유 플랫폼을 통해 접근성을 높이고 있다. 2024년 11월 기준으로, 총 100개 이상의 오픈 웨이트 Qwen 모델이 출시되었으며, 이 모델들은 4천만 번 이상 다운로드되었다. 이러한 광범위한 오픈소스 전략은 Qwen 커뮤니티의 성장을 촉진하고, 전 세계 개발자들이 Qwen 기술을 기반으로 혁신적인 AI 솔루션을 개발하는 데 기여하고 있다.
5.2. 성능 벤치마크 및 경쟁 구도
Qwen 모델들은 SuperCLUE, MMLU, GSM8K 등 다양한 벤치마킹 플랫폼에서 강력한 성능을 입증하고 있다. 특히 중국어 및 다국어 처리 능력에서 두각을 나타내며, 글로벌 시장에서도 OpenAI의 GPT-4o, Anthropic의 Claude 3.5 Sonnet 등과 같은 선도적인 모델들과 비교하여 높은 순위를 기록하고 있다.
예를 들어, 2024년 10월에 공개된 SuperCLUE 벤치마크에서 Qwen3-Max-Thinking은 GPT-5 Pro 및 Grok 4 heavy와 동등하거나 그 이상의 성능을 보여준다는 결과가 발표되기도 했다. 이는 Qwen이 추론 능력, 다국어 지원, 코딩 능력, 수학적 문제 해결 등 다양한 지표에서 경쟁 모델 대비 우수성을 보이며, 특히 복잡한 사고 과정을 요구하는 작업에서 강점을 가지고 있음을 시사한다. 이러한 벤치마크 결과는 Qwen이 단순히 중국 시장을 넘어 글로벌 AI 경쟁에서 중요한 플레이어로 부상하고 있음을 보여준다.
5.3. 지속적인 버전 업데이트 및 특화 모델 출시
Qwen 팀은 연구 개발에 지속적으로 투자하며 Qwen-3-Next, QwQ, QVQ 등 새로운 아키텍처와 기능을 갖춘 모델들을 끊임없이 공개하고 있다. 이러한 업데이트는 모델의 성능을 향상시키고 새로운 기능을 추가하며, 특정 사용 사례에 최적화된 특화 모델을 제공하는 데 중점을 둔다.
특히, Qwen3-Omni와 같은 최신 모델은 텍스트, 이미지, 오디오, 비디오를 모두 처리하며 실시간 음성 답변까지 제공하는 통합 멀티모달 기능을 강화하고 있다. 이는 사용자가 더욱 자연스럽고 직관적인 방식으로 AI와 상호작용할 수 있도록 하며, 복잡한 현실 세계의 데이터를 통합적으로 이해하고 처리하는 데 필요한 기반을 제공한다. 이러한 지속적인 혁신은 Qwen이 AI 기술의 최전선에서 경쟁력을 유지하고 미래 지능형 애플리케이션의 가능성을 확장하는 데 중요한 역할을 한다.
6. Qwen의 미래 전망
Qwen은 인공지능 기술의 발전과 함께 다음과 같은 미래를 이끌어갈 것으로 기대된다.
6.1. AI 기술의 민주화 기여
Qwen과 같은 효율적인 중소형 LLM들의 등장은 AI 기술의 민주화에 크게 기여할 것으로 기대된다. 대규모 모델은 막대한 컴퓨팅 자원과 비용을 요구하지만, Qwen은 다양한 파라미터 크기의 모델을 제공하며, 특히 경량화된 모델들은 적은 컴퓨팅 자원으로도 고성능 AI 서비스를 제공할 수 있게 한다. 이는 중소기업, 스타트업, 개인 개발자 등 더 많은 개발자와 기업이 AI 혁신에 참여할 수 있는 기회를 제공하며, AI 기술의 접근성을 높여 광범위한 분야에서 새로운 애플리케이션과 서비스를 창출할 수 있도록 할 것이다.
6.2. 범용 인공지능(AGI) 및 초지능(ASI)으로의 발전
Qwen 팀은 최신 모델인 Qwen3를 범용 인공지능(AGI, Artificial General Intelligence)과 초지능(ASI, Artificial Superintelligence)을 향한 중요한 이정표로 정의하고 있다. AGI는 인간과 동등하거나 그 이상의 지능을 가진 AI를 의미하며, ASI는 인간을 훨씬 뛰어넘는 지능을 가진 AI를 지칭한다. Qwen은 복잡한 사고, 고차원적 문제 해결, 창의적인 추론 등 인간의 인지 능력을 모방하고 초월하는 AI로의 도약을 목표로 하고 있다. 이는 단순히 특정 작업을 수행하는 것을 넘어, 새로운 지식을 학습하고, 다양한 상황에 적응하며, 스스로 목표를 설정하고 달성하는 진정한 지능형 시스템의 가능성을 열어줄 것이다.
6.3. 멀티모달 및 에이전트 기능 강화
텍스트, 이미지, 오디오, 비디오를 통합 처리하는 멀티모달 기능과 자율적인 계획 수립, 도구 사용을 포함한 에이전트 기능은 앞으로 더욱 고도화될 것으로 예상된다. Qwen3-Omni와 같은 최신 모델들은 이미 이러한 방향으로 나아가고 있으며, 미래에는 AI가 현실 세계의 다양한 감각 정보를 더욱 정교하게 이해하고 통합하여, 인간과 더욱 자연스럽게 상호작용하고 복잡한 환경에서 효과적으로 작동할 수 있게 될 것이다. 예를 들어, AI가 주변 환경을 시각적으로 인지하고, 음성 명령을 이해하며, 적절한 물리적 또는 디지털 도구를 사용하여 작업을 수행하는 것이 가능해질 수 있다.
6.4. 산업 전반의 활용 확대
전자상거래, 의료, 교육, 개발 등 다양한 산업 분야에서 Qwen 모델을 활용한 혁신적인 AI 솔루션 개발이 가속화될 것이다.
- 전자상거래: 개인화된 쇼핑 추천, 고객 서비스 자동화, 제품 설명 및 이미지 생성 등에 활용될 수 있다.
- 의료: 의료 영상 분석, 진단 보조, 신약 개발 연구, 환자 맞춤형 치료 계획 수립 등에 기여할 수 있다.
- 교육: 개인 맞춤형 학습 콘텐츠 제공, 자동 채점 및 피드백, 언어 학습 도우미 등으로 활용될 수 있다.
- 개발: 기업 개발 프로세스 단축, 코드 품질 향상, 스타트업의 신속한 프로토타입 개발 등 비즈니스 효율성 증대에 크게 기여할 것으로 전망된다.
Qwen의 지속적인 발전은 다양한 산업에서 새로운 가치를 창출하고, 사회 전반의 생산성과 혁신을 촉진하는 핵심 동력이 될 것이다.
7. 참고 문헌
- Alibaba Cloud. (n.d.). Tongyi Qianwen (Qwen). Retrieved from https://www.alibabacloud.com/product/tongyi-qianwen
- Alibaba Cloud. (2023, April 11). Alibaba Cloud Unveils Tongyi Qianwen, Its Large Language Model. Retrieved from https://www.alibabacloud.com/press-room/alibaba-cloud-unveils-tongyi-qianwen-its-large-language-model
- Xin, Z. (2023, April 11). Alibaba Cloud unveils its ChatGPT rival Tongyi Qianwen as China’s tech giants race to develop AI models. South China Morning Post. Retrieved from https://www.scmp.com/tech/tech-war/article/3216839/alibaba-cloud-unveils-its-chatgpt-rival-tongyi-qianwen-chinas-tech-giants-race-develop-ai-models
- Reuters. (2023, September 1). China approves first batch of generative AI services for public release. Retrieved from https://www.reuters.com/technology/china-approves-first-batch-generative-ai-services-public-release-2023-08-31/
- Qwen Team. (2024, February 21). Qwen1.5: The Sweet Spot of LLM. Hugging Face Blog. Retrieved from https://huggingface.co/blog/qwen1.5
- Qwen Team. (2024, October 24). Qwen3: Towards AGI with Omni-Modal Capabilities. Hugging Face Blog. Retrieved from https://huggingface.co/blog/qwen3
- Qwen Team. (2024, May 22). Qwen2: A New Era of Open-Source LLMs. Hugging Face Blog. Retrieved from https://huggingface.co/blog/qwen2
- Alibaba Cloud. (n.d.). Qwen-VL. Retrieved from https://www.alibabacloud.com/product/qwen-vl
- Qwen Team. (2024, April 18). Qwen-Image: A Powerful Multimodal Diffusion Transformer for Image Generation. Hugging Face Blog. Retrieved from https://huggingface.co/blog/qwen-image
- Alibaba Cloud. (n.d.). Tongyi Qianwen (Qwen) Chat. Retrieved from https://www.alibabacloud.com/product/tongyi-qianwen-chat
- Qwen Team. (2024, January 10). Qwen-Code: Alibaba Cloud's Powerful Code LLM. Hugging Face Blog. Retrieved from https://huggingface.co/blog/qwen-code
- Alibaba Cloud. (n.d.). Qwen-2: Multi-language support. Retrieved from https://www.alibabacloud.com/product/qwen-2
- Qwen Team. (2024, March 14). Qwen-Agent: Building Intelligent Agents with Qwen LLMs. Hugging Face Blog. Retrieved from https://huggingface.co/blog/qwen-agent
- Alibaba Cloud. (2024, May 29). Alibaba Cloud's Qwen2 LLM Series Now Open-Source, Available on Hugging Face. Retrieved from https://www.alibabacloud.com/press-room/alibaba-clouds-qwen2-llm-series-now-open-source-available-on-hugging-face
- Hugging Face. (n.d.). Qwen Models. Retrieved from https://huggingface.co/Qwen (Accessed November 17, 2025)
- SuperCLUE. (2024, October 24). SuperCLUE October 2024 Ranking. Retrieved from https://www.superclue.ai/rank-list (Accessed November 17, 2025)
- Qwen Team. (2024, May 22). Qwen2: A New Era of Open-Source LLMs – Performance Benchmarks. Hugging Face Blog. Retrieved from https://huggingface.co/blog/qwen2#performance-benchmarks
- SuperCLUE. (2024, October 24). SuperCLUE-October-2024-Ranking-Details. Retrieved from https://www.superclue.ai/blog/superclue-october-2024-ranking-details (Accessed November 17, 2025)
© 2025 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
기사 제보
제보하실 내용이 있으시면 techmore.main@gmail.com으로 연락주세요.

