캐시 호컬 뉴욕주지사가 13일(현지시각) 뉴욕시를 제외한 주 전역에서 로보택시가 돈을 받고 운행할 수 있게 허용하는 법안을 제안했다. 이는 자율주행
자율주행
목차
1. 자율주행의 개념 및 분류
2. 자율주행 기술의 역사와 발전 과정
3. 자율주행의 핵심 기술 및 원리
4. 주요 활용 사례 및 응용 분야
5. 현재 동향 및 상용화 수준
6. 자율주행 기술의 미래 전망 및 기대 효과
1. 자율주행의 개념 및 분류
자율주행은 차량이 운전자의 조작 없이 주변 환경을 인지하고, 주행 상황을 판단하며, 스스로 차량을 제어하여 목적지까지 이동하는 기술을 의미한다. 이는 단순한 운전자 보조 시스템을 넘어, 차량 자체의 지능적인 판단과 행동을 통해 안전하고 효율적인 이동을 구현하는 것을 목표로 한다. 자율주행 기술은 그 발전 수준에 따라 국제적으로 표준화된 분류 체계를 따르는데, 이는 미국 자동차 공학회(SAE, Society of Automotive Engineers)에서 정의한 6단계(레벨 0~5) 분류가 가장 널리 사용된다.
1.1. SAE 자율주행 레벨 분류
SAE 분류는 주행 중 운전자의 개입 정도와 시스템이 담당하는 주행 기능의 범위를 기준으로 자율주행 단계를 나눈다. 각 레벨은 다음과 같다.
레벨 0 (자동화 없음, No Automation): 운전자가 모든 주행 기능을 직접 제어하는 단계이다. 차량은 어떠한 자율주행 기능도 제공하지 않는다.
레벨 1 (운전자 보조, Driver Assistance): 특정 주행 모드에서 시스템이 운전자를 보조하는 단계이다. 예를 들어, 어댑티브 크루즈 컨트롤(ACC)이나 차선 유지 보조(LKA) 기능이 이에 해당한다. 운전자는 여전히 주변 환경을 주시하고, 언제든 차량 제어권을 넘겨받을 준비를 해야 한다.
레벨 2 (부분 자동화, Partial Automation): 시스템이 조향과 가감속 등 두 가지 이상의 주행 기능을 동시에 수행하는 단계이다. 테슬라의 오토파일럿이나 현대차의 고속도로 주행 보조(HDA) 등이 대표적이다. 하지만 운전자는 여전히 주행 환경을 모니터링하고, 시스템이 요청하거나 비상 상황 발생 시 즉시 개입해야 한다.
레벨 3 (조건부 자동화, Conditional Automation): 특정 조건 하에서 시스템이 모든 주행 기능을 수행하고 주변 환경을 모니터링하는 단계이다. 운전자는 시스템이 안전하게 작동할 수 있는 특정 조건(예: 고속도로 주행) 내에서는 운전에서 자유로울 수 있다. 그러나 시스템이 주행 불가능 상황을 감지하고 운전자에게 개입을 요청하면, 운전자는 제한된 시간 내에 제어권을 넘겨받아야 한다. 혼다의 레전드와 메르세데스-벤츠의 드라이브 파일럿이 레벨 3 시스템을 상용화한 사례이다.
레벨 4 (고도 자동화, High Automation): 특정 운행 설계 영역(ODD, Operational Design Domain) 내에서 시스템이 모든 주행 기능을 수행하며, 운전자의 개입 없이 비상 상황에도 스스로 대처할 수 있는 단계이다. 운전자는 ODD 내에서는 운전석에 앉아있을 필요조차 없으며, 시스템이 운행 불가능 상황을 감지하더라도 안전하게 차량을 정지시킬 수 있다. 로보택시 서비스 등이 레벨 4를 목표로 개발되고 있다.
레벨 5 (완전 자동화, Full Automation): 모든 도로 조건과 환경에서 시스템이 모든 주행 기능을 수행하는 단계이다. 운전자의 개입이 전혀 필요 없으며, 사실상 운전대나 페달이 없는 차량도 가능해진다. 이는 인간 운전자가 할 수 있는 모든 주행을 시스템이 완벽하게 대체하는 궁극적인 자율주행 단계이다.
2. 자율주행 기술의 역사와 발전 과정
자율주행 기술의 역사는 20세기 중반으로 거슬러 올라간다. 초기에는 주로 군사적 목적이나 자동화된 운송 시스템 연구의 일환으로 시작되었다.
2.1. 초기 연구 및 개념 정립 (1950년대 ~ 1980년대)
1950년대에는 제너럴 모터스(GM)가 '미래의 고속도로(Future Highway)'라는 개념을 제시하며, 도로에 매설된 전선을 통해 차량을 제어하는 아이디어를 선보였다. 이는 오늘날 자율주행의 초기 구상으로 볼 수 있다. 1980년대에는 카네기 멜론 대학교의 ALVINN(Autonomous Land Vehicle In a Neural Network) 프로젝트가 신경망을 이용해 도로를 인식하고 주행하는 연구를 진행하며 인공지능의 가능성을 보여주었다.
2.2. DARPA 챌린지 및 센서 기술 발전 (2000년대)
자율주행 기술 발전에 결정적인 전환점이 된 것은 미국 국방부 산하 방위고등연구계획국(DARPA)이 주최한 'DARPA 그랜드 챌린지'와 '어반 챌린지'이다. 2004년부터 시작된 이 대회들은 무인 차량이 사막이나 도시 환경에서 정해진 코스를 완주하는 것을 목표로 했으며, 라이다(LiDAR), 레이더(Radar), 카메라 등 다양한 센서 기술과 인공지능 기반의 환경 인식 및 경로 계획 기술 발전을 촉진했다. 스탠퍼드 대학교의 '스탠리(Stanley)'와 카네기 멜론 대학교의 '보스(Boss)' 등이 이 대회를 통해 자율주행 기술의 실현 가능성을 입증했다.
2.3. 인공지능 및 빅데이터 도입 (2010년대)
2010년대에 들어서면서 딥러닝을 비롯한 인공지능 기술의 비약적인 발전과 컴퓨팅 파워의 증가는 자율주행 기술 발전에 가속도를 붙였다. 구글(현 웨이모)은 2009년부터 자율주행차 프로젝트를 시작하며 실제 도로 주행 데이터를 대규모로 수집하고, 이를 기반으로 인공지능 알고리즘을 고도화했다. 테슬라는 카메라 기반의 비전 시스템과 인공지능을 활용한 자율주행 기술을 개발하며 상용차에 적용하기 시작했다. 이 시기에는 고정밀 지도 기술과 V2X(Vehicle-to-everything) 통신 기술의 중요성도 부각되었다.
2.4. 상용화 경쟁 심화 (2020년대 이후)
현재는 레벨 2, 3 수준의 자율주행 기능이 상용차에 폭넓게 적용되고 있으며, 레벨 4 수준의 로보택시 서비스가 일부 지역에서 시범 운영되거나 상용화 초기 단계에 진입했다. 웨이모, 크루즈(Cruise), 바이두(Baidu) 등은 특정 지역에서 운전자 없는 로보택시 서비스를 제공하며 기술의 안정성과 신뢰성을 입증하고 있다. 완성차 제조사들은 물론, 엔비디아(NVIDIA), 인텔(Intel) 모빌아이(Mobileye)와 같은 반도체 및 소프트웨어 기업들도 자율주행 시장의 주도권을 잡기 위해 치열하게 경쟁하고 있다.
3. 자율주행의 핵심 기술 및 원리
자율주행 시스템은 크게 주변 환경을 인지하는 센서, 수집된 데이터를 분석하고 판단하는 인공지능, 정확한 위치를 파악하는 고정밀 지도 및 측위 기술, 그리고 차량을 제어하는 제어 시스템으로 구성된다. 이 네 가지 핵심 기술이 유기적으로 결합하여 자율주행을 가능하게 한다.
3.1. 환경 인지 센서 기술
자율주행차는 사람의 눈과 같은 역할을 하는 다양한 센서를 통해 주변 환경을 인식한다.
카메라 (Camera): 차량 주변의 시각 정보를 수집하여 차선, 신호등, 표지판, 보행자, 다른 차량 등을 식별한다. 색상 정보를 얻을 수 있고 비용이 저렴하며 해상도가 높다는 장점이 있지만, 빛의 변화(역광, 터널), 날씨(안개, 비, 눈)에 취약하다는 단점이 있다.
레이더 (Radar): 전파를 발사하여 물체에 반사되어 돌아오는 시간을 측정해 물체와의 거리, 속도, 방향을 감지한다. 날씨 변화에 강하고 장거리 감지에 유리하며, 특히 전방 충돌 방지 시스템(FCW)이나 어댑티브 크루즈 컨트롤(ACC)에 필수적으로 사용된다. 하지만 물체의 형상을 정확히 파악하기 어렵다는 한계가 있다.
라이다 (LiDAR): 레이저 펄스를 발사하여 반사되는 시간을 측정해 주변 환경의 3D 지도를 생성한다. 매우 정밀한 거리 및 형태 정보를 제공하며, 야간에도 뛰어난 성능을 발휘한다. 자율주행차의 '눈' 또는 '뇌'의 핵심 센서로 불리지만, 높은 비용과 날씨에 따른 성능 저하 가능성이 단점으로 지적된다.
초음파 센서 (Ultrasonic Sensor): 주로 근거리 물체 감지에 사용되며, 주차 보조 시스템이나 저속 주행 시 장애물 감지에 활용된다.
3.2. 인공지능 및 머신러닝
다양한 센서에서 수집된 방대한 데이터는 인공지능(AI)과 머신러닝(ML) 알고리즘을 통해 분석되고 해석된다. 이는 자율주행차의 '뇌' 역할을 한다.
데이터 융합 (Sensor Fusion): 각 센서의 장단점을 보완하기 위해 여러 센서에서 얻은 데이터를 통합하여 보다 정확하고 신뢰성 있는 환경 모델을 구축한다. 예를 들어, 카메라의 시각 정보와 라이다의 3D 거리 정보를 결합하여 물체의 종류와 위치를 더욱 정확하게 파악한다.
객체 인식 및 분류 (Object Detection & Classification): 딥러닝 기반의 컴퓨터 비전 기술을 활용하여 이미지 및 3D 포인트 클라우드 데이터에서 차량, 보행자, 자전거, 차선, 신호등 등을 실시간으로 감지하고 분류한다.
경로 계획 및 의사 결정 (Path Planning & Decision Making): 인식된 환경 정보와 고정밀 지도를 바탕으로 안전하고 효율적인 주행 경로를 계획한다. 이는 예측 알고리즘을 통해 다른 차량이나 보행자의 움직임을 예측하고, 이에 따라 차선 변경, 속도 조절, 정지 등의 의사결정을 내리는 과정을 포함한다. 강화 학습(Reinforcement Learning)과 같은 고급 AI 기술이 활용되기도 한다.
3.3. 고정밀 지도 및 측위 기술
자율주행차는 정확한 위치 파악과 주변 환경에 대한 상세한 정보를 위해 고정밀 지도(HD Map)와 정밀 측위 기술을 필요로 한다.
고정밀 지도 (HD Map): 일반 내비게이션 지도보다 훨씬 정밀한 정보를 제공한다. 차선 정보, 도로 경계, 신호등 위치, 표지판, 노면 표시, 심지어 가로수나 건물과 같은 주변 지형지물까지 센티미터 단위의 정확도로 포함한다. 이는 센서의 한계를 보완하고, 차량이 현재 위치를 정확히 파악하며, 미리 경로를 계획하는 데 필수적이다.
정밀 측위 (Precise Positioning): GPS(GNSS) 신호와 함께 IMU(관성 측정 장치), 휠 속도 센서, 카메라, 라이다 등 다양한 센서 데이터를 융합하여 차량의 정확한 위치를 실시간으로 파악한다. 특히 RTK(Real-Time Kinematic) GPS나 PPP(Precise Point Positioning)와 같은 기술은 GPS 오차를 보정하여 수 센티미터 수준의 정밀한 위치 정보를 제공한다.
3.4. 제어 시스템 (Drive-by-Wire)
자율주행 시스템의 판단과 계획에 따라 차량을 실제로 움직이는 것이 제어 시스템이다. 이는 'Drive-by-Wire' 기술을 기반으로 한다.
전자식 제어 (Electronic Control): 기존의 기계식 연결(스티어링 휠과 바퀴, 브레이크 페달과 브레이크 등)을 전기 신호로 대체하는 기술이다. 스티어 바이 와이어(Steer-by-Wire), 브레이크 바이 와이어(Brake-by-Wire), 스로틀 바이 와이어(Throttle-by-Wire) 등이 이에 해당한다. 이를 통해 자율주행 시스템이 차량의 조향, 가속, 제동을 정밀하게 제어할 수 있게 된다.
차량 동역학 제어 (Vehicle Dynamics Control): 차량의 안정성과 승차감을 유지하면서 경로를 정확하게 추종하도록 제어한다. 이는 속도 제어, 차선 유지 제어, 장애물 회피 제어 등 다양한 하위 제어 알고리즘을 포함한다.
4. 주요 활용 사례 및 응용 분야
자율주행 기술은 단순히 개인 승용차를 넘어 다양한 운송 및 물류 분야에서 혁신적인 변화를 가져오고 있다.
4.1. 승용차 및 대중교통
개인 승용차: 현재 레벨 2 수준의 자율주행 기능(고속도로 주행 보조, 차선 변경 보조 등)이 고급차종을 중심으로 보편화되고 있으며, 테슬라와 같은 일부 제조사는 레벨 3에 준하는 기능을 제공하며 운전자의 편의성을 높이고 있다. 미래에는 완전 자율주행 승용차가 보편화되어 운전자가 운전에서 완전히 해방되는 시대를 열 것으로 기대된다.
로보택시 (Robotaxi): 레벨 4 수준의 자율주행 기술을 기반으로 운전자 없이 승객을 운송하는 서비스이다. 웨이모(Waymo), 크루즈(Cruise), 바이두(Baidu) 등은 미국 피닉스, 샌프란시스코, 중국 베이징 등 일부 도시에서 로보택시 서비스를 상용화하거나 시범 운영하고 있다. 이는 대중교통의 효율성을 높이고, 이동 약자의 접근성을 개선하며, 교통 체증 및 주차 문제 해결에 기여할 것으로 보인다.
자율주행 셔틀: 특정 구간을 정기적으로 운행하는 자율주행 셔틀버스도 상용화되고 있다. 공항, 대학 캠퍼스, 산업 단지, 신도시 등에서 고정된 노선을 운행하며 대중교통의 보조적인 역할을 수행한다. 국내에서도 세종시, 순천만국가정원 등에서 자율주행 셔틀이 운영된 바 있다.
4.2. 물류 및 배송
자율주행 트럭: 장거리 운송에 특화된 자율주행 트럭은 물류 비용 절감, 운전자 피로도 감소, 운행 시간 증대 등의 이점을 제공한다. 투심플(TuSimple), 오로라(Aurora) 등은 고속도로를 중심으로 자율주행 트럭 운송 서비스를 개발 및 시범 운영하고 있다.
배송 로봇: 라스트마일(Last-mile) 배송에 활용되는 자율주행 배송 로봇은 도심이나 아파트 단지 내에서 소규모 물품을 배송한다. 이는 인력난 해소와 배송 효율성 증대에 기여하며, 국내에서도 우아한형제들의 '딜리'와 같은 배송 로봇이 시범 운영되고 있다.
4.3. 기타 운송수단
철도: 지하철, 경전철 등 도시 철도 시스템에서는 이미 높은 수준의 무인 운전 시스템이 적용되고 있다. 이는 정시성 확보와 운영 효율성 증대에 크게 기여한다.
항공기: 항공기는 이륙 및 착륙 시 조종사의 개입이 필요하지만, 순항 비행 중에는 오토파일럿 시스템을 통해 상당 부분 자율 비행이 이루어진다. 미래에는 완전 자율 비행 항공기 및 드론 택시(UAM) 개발이 활발히 진행될 것으로 예상된다.
선박: 자율운항 선박은 항해 중 충돌 회피, 경로 최적화, 연료 효율 증대 등을 목표로 개발되고 있다. 현대중공업그룹의 아비커스(Avikus)는 대형 선박의 자율운항 솔루션을 개발하며 상용화를 추진 중이다.
5. 현재 동향 및 상용화 수준
현재 자율주행 기술은 빠른 속도로 발전하며 상용화 단계를 밟고 있으나, 완전 자율주행(레벨 5)에 도달하기까지는 여전히 많은 과제가 남아있다.
5.1. 상용화 현황 및 주요 기업 경쟁
현재 시장에서는 레벨 2 수준의 자율주행 기능이 보편화되어 신차 구매 시 쉽게 접할 수 있다. 고속도로 주행 보조(HDA), 차선 유지 보조(LKA), 어댑티브 크루즈 컨트롤(ACC) 등이 대표적이다. 레벨 3 자율주행은 특정 조건(예: 고속도로 정체 구간)에서 운전자의 개입 없이 주행이 가능한 수준으로, 메르세데스-벤츠의 '드라이브 파일럿'과 혼다의 '레전드'가 일본과 독일 등 일부 국가에서 상용화되었다.
레벨 4 자율주행은 특정 운행 설계 영역(ODD) 내에서 운전자 개입 없이 완전 자율주행이 가능한 단계로, 웨이모(Waymo)와 크루즈(Cruise)가 미국 피닉스, 샌프란시스코 등에서 로보택시 서비스를 운영하며 선두를 달리고 있다. 중국에서는 바이두(Baidu)의 아폴로(Apollo)가 우한, 충칭 등에서 로보택시를 운영 중이다.
주요 완성차 제조사들은 물론, 구글 웨이모, GM 크루즈, 바이두, 그리고 엔비디아, 인텔 모빌아이와 같은 기술 기업들이 자율주행 소프트웨어 및 하드웨어 개발에 막대한 투자를 하며 치열한 경쟁을 벌이고 있다. 특히 소프트웨어 정의 차량(SDV)으로의 전환이 가속화되면서, 자율주행 기술은 차량의 핵심 경쟁력으로 부상하고 있다.
5.2. 기술적 도전 과제
자율주행 기술의 완전한 상용화를 위해서는 여전히 해결해야 할 기술적 난제들이 많다.
악천후 및 비정형 환경 대응: 폭우, 폭설, 짙은 안개 등 악천후 상황에서는 센서의 인지 능력이 크게 저하될 수 있다. 또한, 공사 구간, 비포장도로, 예측 불가능한 보행자 행동 등 비정형적인 주행 환경에서의 안정적인 대응 능력 확보가 중요하다.
엣지 케이스 (Edge Cases) 처리: 일반적이지 않고 드물게 발생하는 '엣지 케이스' 상황(예: 도로 위의 특이한 물체, 비정상적인 교통 흐름)에 대한 시스템의 판단 및 대응 능력 강화가 필요하다. 이를 위해 방대한 양의 실제 주행 데이터와 시뮬레이션 데이터를 활용한 학습이 필수적이다.
사이버 보안: 자율주행차는 외부 네트워크에 연결되어 해킹의 위협에 노출될 수 있다. 차량 제어 시스템에 대한 사이버 공격은 심각한 안전 문제를 야기할 수 있으므로, 강력한 보안 시스템 구축이 필수적이다.
높은 컴퓨팅 파워 및 전력 소모: 복잡한 인공지능 알고리즘과 수많은 센서 데이터를 실시간으로 처리하기 위해서는 고성능 컴퓨팅 하드웨어가 필요하며, 이는 차량의 전력 소모를 증가시키는 요인이 된다.
5.3. 법적 및 윤리적 도전 과제
기술 발전과 더불어 법적, 윤리적 문제 또한 자율주행 상용화의 중요한 걸림돌로 작용하고 있다.
사고 책임 소재: 자율주행차 사고 발생 시 책임 소재를 누구에게 물을 것인가(운전자, 제조사, 소프트웨어 개발사 등)에 대한 명확한 법적 기준이 아직 정립되지 않았다. 이는 기술 개발 및 보험 제도에 큰 영향을 미친다.
규제 및 표준화: 각국 정부는 자율주행차의 안전성 확보를 위한 규제 프레임워크를 마련하고 있으며, 국제적인 표준화 노력도 진행 중이다. 하지만 기술 발전 속도에 맞춰 법규를 정비하는 것이 쉽지 않다.
윤리적 딜레마 (Trolley Problem): 피할 수 없는 사고 상황에서 자율주행차가 누구의 생명을 우선시해야 하는가와 같은 윤리적 딜레마는 사회적 합의가 필요한 부분이다. 예를 들어, 보행자와 탑승자 중 누구를 보호할 것인가와 같은 문제는 시스템 설계에 있어 중요한 고려 사항이다.
데이터 프라이버시: 자율주행차는 운전자의 이동 경로, 습관 등 민감한 개인 정보를 수집할 수 있다. 이러한 데이터의 수집, 저장, 활용에 대한 투명성과 보안성 확보가 중요하다.
6. 자율주행 기술의 미래 전망 및 기대 효과
자율주행 기술은 미래 사회의 모습을 근본적으로 변화시킬 잠재력을 가지고 있으며, 다양한 분야에서 혁신적인 기대 효과를 가져올 것으로 전망된다.
6.1. 미래 사회 변화 예측
교통 시스템의 혁신: 완전 자율주행 시대가 도래하면 교통 체증이 크게 감소하고, 교통 흐름이 최적화될 것이다. 차량 간 통신(V2V)과 인프라 통신(V2I)을 통해 도로 위의 모든 차량이 유기적으로 연결되어 효율적인 운행이 가능해진다. 또한, 주차 공간 활용의 효율성이 증대되고, 개인 차량 소유의 필요성이 줄어들며 공유 모빌리티 서비스가 더욱 활성화될 수 있다.
도시 계획 및 인프라 변화: 자율주행차에 최적화된 스마트 도시 인프라가 구축될 것이다. 이는 도로 설계, 신호 체계, 주차 공간 등 도시 전반의 변화를 유도하며, 대중교통 시스템과의 연계를 통해 도시 이동성을 극대화할 수 있다.
경제 및 고용 시장 영향: 물류 및 운송 산업의 효율성이 극대화되어 비용 절감 효과가 발생할 것이다. 새로운 모빌리티 서비스 시장이 창출되고 관련 산업이 성장할 것으로 예상된다. 반면, 전문 운전자 직업(택시, 트럭, 버스 기사 등)의 감소 가능성도 제기되어, 이에 대한 사회적 대비가 필요하다.
개인의 삶의 질 향상: 운전으로부터 자유로워진 시간은 개인의 생산성 향상이나 여가 활동에 활용될 수 있다. 이동 약자(노약자, 장애인)의 이동권이 크게 확대되며, 교통사고 감소로 인한 사회적 비용 절감 및 생명 보호 효과도 기대된다.
6.2. 완전 자율주행 시대의 도래 시점 및 과제
전문가들은 레벨 5 완전 자율주행의 상용화 시점에 대해 다양한 예측을 내놓고 있다. 일부는 2030년대 중반 이후로 예상하며, 기술적 난제와 사회적 합의가 필요함을 강조한다. 특히, 모든 기상 조건과 모든 도로 환경에서 인간 운전자를 능가하는 안전성을 확보하는 것이 가장 큰 과제이다.
또한, 앞서 언급된 기술적, 법적, 윤리적 과제들을 해결하기 위한 지속적인 연구 개발과 국제적인 협력, 그리고 사회적 논의가 필수적이다. 특히, 자율주행 시스템의 투명성과 신뢰성을 확보하고, 사고 발생 시 책임 소재를 명확히 하며, 윤리적 기준을 수립하는 것이 중요하다.
6.3. 윤리적 논의의 중요성
자율주행 기술은 단순한 공학적 문제를 넘어 사회 전체의 가치관과 윤리적 판단에 영향을 미친다. '트롤리 딜레마'와 같은 극단적인 상황뿐만 아니라, 시스템의 편향성, 데이터 프라이버시, 인간과 기계의 상호작용 방식 등 다양한 윤리적 질문에 대한 답을 찾아야 한다. 기술 개발 단계부터 사회 각계각층의 참여를 통해 윤리적 가이드라인을 수립하고, 기술이 인간의 존엄성과 안전을 최우선으로 하도록 설계하는 노력이 지속되어야 할 것이다.
자율주행 기술은 인류에게 전례 없는 이동의 자유와 편의를 제공할 잠재력을 가지고 있다. 기술의 발전과 함께 사회적 합의와 제도적 정비가 조화를 이룰 때, 우리는 비로소 안전하고 지속 가능한 자율주행 시대를 맞이할 수 있을 것이다.
참고 문헌
SAE International. (2021). J3016_202104: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.
National Highway Traffic Safety Administration (NHTSA). (2022). Automated Vehicles for Safety. Retrieved from https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
Mercedes-Benz. (2023). DRIVE PILOT. Retrieved from https://www.mercedes-benz.com/en/innovation/drive-pilot/
Carnegie Mellon University. (n.d.). ALVINN. Retrieved from https://www.cs.cmu.edu/~tjochem/alvinn/alvinn.html
DARPA. (n.d.). Grand Challenge. Retrieved from https://www.darpa.mil/about-us/timeline/grand-challenge
Waymo. (n.d.). Our history. Retrieved from https://waymo.com/journey/
Cruise. (2023). Cruise Origin. Retrieved from https://www.getcruise.com/origin/
Mobileye. (2023). Mobileye SuperVision™ and Mobileye Chauffeur™. Retrieved from https://www.mobileye.com/our-technology/mobileye-supervision-and-mobileye-chauffeur/
Kim, J. H., & Kim, J. H. (2022). A Review of Sensor Fusion Techniques for Autonomous Driving. Journal of Advanced Transportation, 2022.
Chen, X., et al. (2023). Deep Learning for Autonomous Driving: A Survey. IEEE Transactions on Intelligent Transportation Systems, 24(1), 1-20.
Jo, K., et al. (2022). High-Definition Map Generation and Localization for Autonomous Driving: A Survey. Sensors, 22(1), 321.
Guldner, S., et al. (2021). Drive-by-Wire Systems for Autonomous Vehicles: A Review. SAE Technical Paper, 2021-01-0863.
Tesla. (n.d.). Autopilot and Full Self-Driving Capability. Retrieved from https://www.tesla.com/autopilot
Baidu Apollo. (n.d.). Robotaxi. Retrieved from https://apollo.baidu.com/robotaxi
국토교통부. (2023). 자율주행 셔틀 서비스 확대.
TuSimple. (n.d.). Autonomous Freight Network. Retrieved from https://www.tusimple.com/technology/autonomous-freight-network
우아한형제들. (n.d.). 배달의민족 자율주행 로봇 '딜리'. Retrieved from https://www.woowahan.com/tech/robot-delivery
Siemens Mobility. (n.d.). Automated Train Operation. Retrieved from https://www.siemens.com/global/en/products/mobility/rail-solutions/automation/automated-train-operation.html
Airbus. (n.d.). Urban Air Mobility. Retrieved from https://www.airbus.com/en/innovation/future-mobility/urban-air-mobility
Avikus. (n.d.). Autonomous Navigation. Retrieved from https://www.avikus.ai/technology/autonomous-navigation
Honda. (2021). Honda SENSING Elite. Retrieved from https://global.honda/newsroom/news/2021/4210304eng.html
Deloitte. (2023). The future of mobility: Autonomous vehicles. Retrieved from https://www2.deloitte.com/us/en/pages/manufacturing/articles/future-of-mobility-autonomous-vehicles.html
Badue, C., et al. (2021). Self-Driving Cars: A Survey. Expert Systems with Applications, 165, 113812.
European Union Agency for Cybersecurity (ENISA). (2022). Cybersecurity of Autonomous Vehicles. Retrieved from https://www.enisa.europa.eu/publications/cybersecurity-of-autonomous-vehicles
Fagnant, D. J., & Kockelman, K. (2021). Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations. Transportation Research Part A: Policy and Practice, 144, 1-14.
Bonnefon, J. F., et al. (2016). The social dilemma of autonomous vehicles. Science, 352(6293), 1573-1576.
McKinsey & Company. (2023). Autonomous driving: The path to adoption. Retrieved from https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-driving-the-path-to-adoption
KPMG. (2022). Autonomous Vehicles Readiness Index. Retrieved from https://kpmg.com/xx/en/home/insights/2022/07/autonomous-vehicles-readiness-index.html
Gartner. (2023). Hype Cycle for Automotive and Smart Mobility.
기술이 발전하는 데 중요한 전환점이 될 전망이다. 호컬 주지사는 주 의회 연두교서에서 이 내용을 발표했다. 이는 그동안 자율주행차 도입에 조심스러웠던 뉴욕주의 입장을 바꾸려는 시도로 풀이된다.
그동안 뉴욕주는 자율주행차를 받아들이는 데 매우 신중했다. 특히 운전자가 항상 운전대를 잡고 있어야 한다는 규정 때문에 사업을 넓히기가 어려웠다. 이런 규제 탓에 운전자 없는 완전 자율주행 로보택시는 운영할 수 없었다. 지금은 자율주행차(AV) 시범 프로그램을 통해 제한적인 시험 주행만 허용하고 있다.
이번 법안은 뉴욕시를 제외한 지역에서 자율주행 승객 차량이 제한적으로 영업할 수 있도록 길을 열어준다. 법안에 따라 자율주행
자율주행
목차
1. 자율주행의 개념 및 분류
2. 자율주행 기술의 역사와 발전 과정
3. 자율주행의 핵심 기술 및 원리
4. 주요 활용 사례 및 응용 분야
5. 현재 동향 및 상용화 수준
6. 자율주행 기술의 미래 전망 및 기대 효과
1. 자율주행의 개념 및 분류
자율주행은 차량이 운전자의 조작 없이 주변 환경을 인지하고, 주행 상황을 판단하며, 스스로 차량을 제어하여 목적지까지 이동하는 기술을 의미한다. 이는 단순한 운전자 보조 시스템을 넘어, 차량 자체의 지능적인 판단과 행동을 통해 안전하고 효율적인 이동을 구현하는 것을 목표로 한다. 자율주행 기술은 그 발전 수준에 따라 국제적으로 표준화된 분류 체계를 따르는데, 이는 미국 자동차 공학회(SAE, Society of Automotive Engineers)에서 정의한 6단계(레벨 0~5) 분류가 가장 널리 사용된다.
1.1. SAE 자율주행 레벨 분류
SAE 분류는 주행 중 운전자의 개입 정도와 시스템이 담당하는 주행 기능의 범위를 기준으로 자율주행 단계를 나눈다. 각 레벨은 다음과 같다.
레벨 0 (자동화 없음, No Automation): 운전자가 모든 주행 기능을 직접 제어하는 단계이다. 차량은 어떠한 자율주행 기능도 제공하지 않는다.
레벨 1 (운전자 보조, Driver Assistance): 특정 주행 모드에서 시스템이 운전자를 보조하는 단계이다. 예를 들어, 어댑티브 크루즈 컨트롤(ACC)이나 차선 유지 보조(LKA) 기능이 이에 해당한다. 운전자는 여전히 주변 환경을 주시하고, 언제든 차량 제어권을 넘겨받을 준비를 해야 한다.
레벨 2 (부분 자동화, Partial Automation): 시스템이 조향과 가감속 등 두 가지 이상의 주행 기능을 동시에 수행하는 단계이다. 테슬라의 오토파일럿이나 현대차의 고속도로 주행 보조(HDA) 등이 대표적이다. 하지만 운전자는 여전히 주행 환경을 모니터링하고, 시스템이 요청하거나 비상 상황 발생 시 즉시 개입해야 한다.
레벨 3 (조건부 자동화, Conditional Automation): 특정 조건 하에서 시스템이 모든 주행 기능을 수행하고 주변 환경을 모니터링하는 단계이다. 운전자는 시스템이 안전하게 작동할 수 있는 특정 조건(예: 고속도로 주행) 내에서는 운전에서 자유로울 수 있다. 그러나 시스템이 주행 불가능 상황을 감지하고 운전자에게 개입을 요청하면, 운전자는 제한된 시간 내에 제어권을 넘겨받아야 한다. 혼다의 레전드와 메르세데스-벤츠의 드라이브 파일럿이 레벨 3 시스템을 상용화한 사례이다.
레벨 4 (고도 자동화, High Automation): 특정 운행 설계 영역(ODD, Operational Design Domain) 내에서 시스템이 모든 주행 기능을 수행하며, 운전자의 개입 없이 비상 상황에도 스스로 대처할 수 있는 단계이다. 운전자는 ODD 내에서는 운전석에 앉아있을 필요조차 없으며, 시스템이 운행 불가능 상황을 감지하더라도 안전하게 차량을 정지시킬 수 있다. 로보택시 서비스 등이 레벨 4를 목표로 개발되고 있다.
레벨 5 (완전 자동화, Full Automation): 모든 도로 조건과 환경에서 시스템이 모든 주행 기능을 수행하는 단계이다. 운전자의 개입이 전혀 필요 없으며, 사실상 운전대나 페달이 없는 차량도 가능해진다. 이는 인간 운전자가 할 수 있는 모든 주행을 시스템이 완벽하게 대체하는 궁극적인 자율주행 단계이다.
2. 자율주행 기술의 역사와 발전 과정
자율주행 기술의 역사는 20세기 중반으로 거슬러 올라간다. 초기에는 주로 군사적 목적이나 자동화된 운송 시스템 연구의 일환으로 시작되었다.
2.1. 초기 연구 및 개념 정립 (1950년대 ~ 1980년대)
1950년대에는 제너럴 모터스(GM)가 '미래의 고속도로(Future Highway)'라는 개념을 제시하며, 도로에 매설된 전선을 통해 차량을 제어하는 아이디어를 선보였다. 이는 오늘날 자율주행의 초기 구상으로 볼 수 있다. 1980년대에는 카네기 멜론 대학교의 ALVINN(Autonomous Land Vehicle In a Neural Network) 프로젝트가 신경망을 이용해 도로를 인식하고 주행하는 연구를 진행하며 인공지능의 가능성을 보여주었다.
2.2. DARPA 챌린지 및 센서 기술 발전 (2000년대)
자율주행 기술 발전에 결정적인 전환점이 된 것은 미국 국방부 산하 방위고등연구계획국(DARPA)이 주최한 'DARPA 그랜드 챌린지'와 '어반 챌린지'이다. 2004년부터 시작된 이 대회들은 무인 차량이 사막이나 도시 환경에서 정해진 코스를 완주하는 것을 목표로 했으며, 라이다(LiDAR), 레이더(Radar), 카메라 등 다양한 센서 기술과 인공지능 기반의 환경 인식 및 경로 계획 기술 발전을 촉진했다. 스탠퍼드 대학교의 '스탠리(Stanley)'와 카네기 멜론 대학교의 '보스(Boss)' 등이 이 대회를 통해 자율주행 기술의 실현 가능성을 입증했다.
2.3. 인공지능 및 빅데이터 도입 (2010년대)
2010년대에 들어서면서 딥러닝을 비롯한 인공지능 기술의 비약적인 발전과 컴퓨팅 파워의 증가는 자율주행 기술 발전에 가속도를 붙였다. 구글(현 웨이모)은 2009년부터 자율주행차 프로젝트를 시작하며 실제 도로 주행 데이터를 대규모로 수집하고, 이를 기반으로 인공지능 알고리즘을 고도화했다. 테슬라는 카메라 기반의 비전 시스템과 인공지능을 활용한 자율주행 기술을 개발하며 상용차에 적용하기 시작했다. 이 시기에는 고정밀 지도 기술과 V2X(Vehicle-to-everything) 통신 기술의 중요성도 부각되었다.
2.4. 상용화 경쟁 심화 (2020년대 이후)
현재는 레벨 2, 3 수준의 자율주행 기능이 상용차에 폭넓게 적용되고 있으며, 레벨 4 수준의 로보택시 서비스가 일부 지역에서 시범 운영되거나 상용화 초기 단계에 진입했다. 웨이모, 크루즈(Cruise), 바이두(Baidu) 등은 특정 지역에서 운전자 없는 로보택시 서비스를 제공하며 기술의 안정성과 신뢰성을 입증하고 있다. 완성차 제조사들은 물론, 엔비디아(NVIDIA), 인텔(Intel) 모빌아이(Mobileye)와 같은 반도체 및 소프트웨어 기업들도 자율주행 시장의 주도권을 잡기 위해 치열하게 경쟁하고 있다.
3. 자율주행의 핵심 기술 및 원리
자율주행 시스템은 크게 주변 환경을 인지하는 센서, 수집된 데이터를 분석하고 판단하는 인공지능, 정확한 위치를 파악하는 고정밀 지도 및 측위 기술, 그리고 차량을 제어하는 제어 시스템으로 구성된다. 이 네 가지 핵심 기술이 유기적으로 결합하여 자율주행을 가능하게 한다.
3.1. 환경 인지 센서 기술
자율주행차는 사람의 눈과 같은 역할을 하는 다양한 센서를 통해 주변 환경을 인식한다.
카메라 (Camera): 차량 주변의 시각 정보를 수집하여 차선, 신호등, 표지판, 보행자, 다른 차량 등을 식별한다. 색상 정보를 얻을 수 있고 비용이 저렴하며 해상도가 높다는 장점이 있지만, 빛의 변화(역광, 터널), 날씨(안개, 비, 눈)에 취약하다는 단점이 있다.
레이더 (Radar): 전파를 발사하여 물체에 반사되어 돌아오는 시간을 측정해 물체와의 거리, 속도, 방향을 감지한다. 날씨 변화에 강하고 장거리 감지에 유리하며, 특히 전방 충돌 방지 시스템(FCW)이나 어댑티브 크루즈 컨트롤(ACC)에 필수적으로 사용된다. 하지만 물체의 형상을 정확히 파악하기 어렵다는 한계가 있다.
라이다 (LiDAR): 레이저 펄스를 발사하여 반사되는 시간을 측정해 주변 환경의 3D 지도를 생성한다. 매우 정밀한 거리 및 형태 정보를 제공하며, 야간에도 뛰어난 성능을 발휘한다. 자율주행차의 '눈' 또는 '뇌'의 핵심 센서로 불리지만, 높은 비용과 날씨에 따른 성능 저하 가능성이 단점으로 지적된다.
초음파 센서 (Ultrasonic Sensor): 주로 근거리 물체 감지에 사용되며, 주차 보조 시스템이나 저속 주행 시 장애물 감지에 활용된다.
3.2. 인공지능 및 머신러닝
다양한 센서에서 수집된 방대한 데이터는 인공지능(AI)과 머신러닝(ML) 알고리즘을 통해 분석되고 해석된다. 이는 자율주행차의 '뇌' 역할을 한다.
데이터 융합 (Sensor Fusion): 각 센서의 장단점을 보완하기 위해 여러 센서에서 얻은 데이터를 통합하여 보다 정확하고 신뢰성 있는 환경 모델을 구축한다. 예를 들어, 카메라의 시각 정보와 라이다의 3D 거리 정보를 결합하여 물체의 종류와 위치를 더욱 정확하게 파악한다.
객체 인식 및 분류 (Object Detection & Classification): 딥러닝 기반의 컴퓨터 비전 기술을 활용하여 이미지 및 3D 포인트 클라우드 데이터에서 차량, 보행자, 자전거, 차선, 신호등 등을 실시간으로 감지하고 분류한다.
경로 계획 및 의사 결정 (Path Planning & Decision Making): 인식된 환경 정보와 고정밀 지도를 바탕으로 안전하고 효율적인 주행 경로를 계획한다. 이는 예측 알고리즘을 통해 다른 차량이나 보행자의 움직임을 예측하고, 이에 따라 차선 변경, 속도 조절, 정지 등의 의사결정을 내리는 과정을 포함한다. 강화 학습(Reinforcement Learning)과 같은 고급 AI 기술이 활용되기도 한다.
3.3. 고정밀 지도 및 측위 기술
자율주행차는 정확한 위치 파악과 주변 환경에 대한 상세한 정보를 위해 고정밀 지도(HD Map)와 정밀 측위 기술을 필요로 한다.
고정밀 지도 (HD Map): 일반 내비게이션 지도보다 훨씬 정밀한 정보를 제공한다. 차선 정보, 도로 경계, 신호등 위치, 표지판, 노면 표시, 심지어 가로수나 건물과 같은 주변 지형지물까지 센티미터 단위의 정확도로 포함한다. 이는 센서의 한계를 보완하고, 차량이 현재 위치를 정확히 파악하며, 미리 경로를 계획하는 데 필수적이다.
정밀 측위 (Precise Positioning): GPS(GNSS) 신호와 함께 IMU(관성 측정 장치), 휠 속도 센서, 카메라, 라이다 등 다양한 센서 데이터를 융합하여 차량의 정확한 위치를 실시간으로 파악한다. 특히 RTK(Real-Time Kinematic) GPS나 PPP(Precise Point Positioning)와 같은 기술은 GPS 오차를 보정하여 수 센티미터 수준의 정밀한 위치 정보를 제공한다.
3.4. 제어 시스템 (Drive-by-Wire)
자율주행 시스템의 판단과 계획에 따라 차량을 실제로 움직이는 것이 제어 시스템이다. 이는 'Drive-by-Wire' 기술을 기반으로 한다.
전자식 제어 (Electronic Control): 기존의 기계식 연결(스티어링 휠과 바퀴, 브레이크 페달과 브레이크 등)을 전기 신호로 대체하는 기술이다. 스티어 바이 와이어(Steer-by-Wire), 브레이크 바이 와이어(Brake-by-Wire), 스로틀 바이 와이어(Throttle-by-Wire) 등이 이에 해당한다. 이를 통해 자율주행 시스템이 차량의 조향, 가속, 제동을 정밀하게 제어할 수 있게 된다.
차량 동역학 제어 (Vehicle Dynamics Control): 차량의 안정성과 승차감을 유지하면서 경로를 정확하게 추종하도록 제어한다. 이는 속도 제어, 차선 유지 제어, 장애물 회피 제어 등 다양한 하위 제어 알고리즘을 포함한다.
4. 주요 활용 사례 및 응용 분야
자율주행 기술은 단순히 개인 승용차를 넘어 다양한 운송 및 물류 분야에서 혁신적인 변화를 가져오고 있다.
4.1. 승용차 및 대중교통
개인 승용차: 현재 레벨 2 수준의 자율주행 기능(고속도로 주행 보조, 차선 변경 보조 등)이 고급차종을 중심으로 보편화되고 있으며, 테슬라와 같은 일부 제조사는 레벨 3에 준하는 기능을 제공하며 운전자의 편의성을 높이고 있다. 미래에는 완전 자율주행 승용차가 보편화되어 운전자가 운전에서 완전히 해방되는 시대를 열 것으로 기대된다.
로보택시 (Robotaxi): 레벨 4 수준의 자율주행 기술을 기반으로 운전자 없이 승객을 운송하는 서비스이다. 웨이모(Waymo), 크루즈(Cruise), 바이두(Baidu) 등은 미국 피닉스, 샌프란시스코, 중국 베이징 등 일부 도시에서 로보택시 서비스를 상용화하거나 시범 운영하고 있다. 이는 대중교통의 효율성을 높이고, 이동 약자의 접근성을 개선하며, 교통 체증 및 주차 문제 해결에 기여할 것으로 보인다.
자율주행 셔틀: 특정 구간을 정기적으로 운행하는 자율주행 셔틀버스도 상용화되고 있다. 공항, 대학 캠퍼스, 산업 단지, 신도시 등에서 고정된 노선을 운행하며 대중교통의 보조적인 역할을 수행한다. 국내에서도 세종시, 순천만국가정원 등에서 자율주행 셔틀이 운영된 바 있다.
4.2. 물류 및 배송
자율주행 트럭: 장거리 운송에 특화된 자율주행 트럭은 물류 비용 절감, 운전자 피로도 감소, 운행 시간 증대 등의 이점을 제공한다. 투심플(TuSimple), 오로라(Aurora) 등은 고속도로를 중심으로 자율주행 트럭 운송 서비스를 개발 및 시범 운영하고 있다.
배송 로봇: 라스트마일(Last-mile) 배송에 활용되는 자율주행 배송 로봇은 도심이나 아파트 단지 내에서 소규모 물품을 배송한다. 이는 인력난 해소와 배송 효율성 증대에 기여하며, 국내에서도 우아한형제들의 '딜리'와 같은 배송 로봇이 시범 운영되고 있다.
4.3. 기타 운송수단
철도: 지하철, 경전철 등 도시 철도 시스템에서는 이미 높은 수준의 무인 운전 시스템이 적용되고 있다. 이는 정시성 확보와 운영 효율성 증대에 크게 기여한다.
항공기: 항공기는 이륙 및 착륙 시 조종사의 개입이 필요하지만, 순항 비행 중에는 오토파일럿 시스템을 통해 상당 부분 자율 비행이 이루어진다. 미래에는 완전 자율 비행 항공기 및 드론 택시(UAM) 개발이 활발히 진행될 것으로 예상된다.
선박: 자율운항 선박은 항해 중 충돌 회피, 경로 최적화, 연료 효율 증대 등을 목표로 개발되고 있다. 현대중공업그룹의 아비커스(Avikus)는 대형 선박의 자율운항 솔루션을 개발하며 상용화를 추진 중이다.
5. 현재 동향 및 상용화 수준
현재 자율주행 기술은 빠른 속도로 발전하며 상용화 단계를 밟고 있으나, 완전 자율주행(레벨 5)에 도달하기까지는 여전히 많은 과제가 남아있다.
5.1. 상용화 현황 및 주요 기업 경쟁
현재 시장에서는 레벨 2 수준의 자율주행 기능이 보편화되어 신차 구매 시 쉽게 접할 수 있다. 고속도로 주행 보조(HDA), 차선 유지 보조(LKA), 어댑티브 크루즈 컨트롤(ACC) 등이 대표적이다. 레벨 3 자율주행은 특정 조건(예: 고속도로 정체 구간)에서 운전자의 개입 없이 주행이 가능한 수준으로, 메르세데스-벤츠의 '드라이브 파일럿'과 혼다의 '레전드'가 일본과 독일 등 일부 국가에서 상용화되었다.
레벨 4 자율주행은 특정 운행 설계 영역(ODD) 내에서 운전자 개입 없이 완전 자율주행이 가능한 단계로, 웨이모(Waymo)와 크루즈(Cruise)가 미국 피닉스, 샌프란시스코 등에서 로보택시 서비스를 운영하며 선두를 달리고 있다. 중국에서는 바이두(Baidu)의 아폴로(Apollo)가 우한, 충칭 등에서 로보택시를 운영 중이다.
주요 완성차 제조사들은 물론, 구글 웨이모, GM 크루즈, 바이두, 그리고 엔비디아, 인텔 모빌아이와 같은 기술 기업들이 자율주행 소프트웨어 및 하드웨어 개발에 막대한 투자를 하며 치열한 경쟁을 벌이고 있다. 특히 소프트웨어 정의 차량(SDV)으로의 전환이 가속화되면서, 자율주행 기술은 차량의 핵심 경쟁력으로 부상하고 있다.
5.2. 기술적 도전 과제
자율주행 기술의 완전한 상용화를 위해서는 여전히 해결해야 할 기술적 난제들이 많다.
악천후 및 비정형 환경 대응: 폭우, 폭설, 짙은 안개 등 악천후 상황에서는 센서의 인지 능력이 크게 저하될 수 있다. 또한, 공사 구간, 비포장도로, 예측 불가능한 보행자 행동 등 비정형적인 주행 환경에서의 안정적인 대응 능력 확보가 중요하다.
엣지 케이스 (Edge Cases) 처리: 일반적이지 않고 드물게 발생하는 '엣지 케이스' 상황(예: 도로 위의 특이한 물체, 비정상적인 교통 흐름)에 대한 시스템의 판단 및 대응 능력 강화가 필요하다. 이를 위해 방대한 양의 실제 주행 데이터와 시뮬레이션 데이터를 활용한 학습이 필수적이다.
사이버 보안: 자율주행차는 외부 네트워크에 연결되어 해킹의 위협에 노출될 수 있다. 차량 제어 시스템에 대한 사이버 공격은 심각한 안전 문제를 야기할 수 있으므로, 강력한 보안 시스템 구축이 필수적이다.
높은 컴퓨팅 파워 및 전력 소모: 복잡한 인공지능 알고리즘과 수많은 센서 데이터를 실시간으로 처리하기 위해서는 고성능 컴퓨팅 하드웨어가 필요하며, 이는 차량의 전력 소모를 증가시키는 요인이 된다.
5.3. 법적 및 윤리적 도전 과제
기술 발전과 더불어 법적, 윤리적 문제 또한 자율주행 상용화의 중요한 걸림돌로 작용하고 있다.
사고 책임 소재: 자율주행차 사고 발생 시 책임 소재를 누구에게 물을 것인가(운전자, 제조사, 소프트웨어 개발사 등)에 대한 명확한 법적 기준이 아직 정립되지 않았다. 이는 기술 개발 및 보험 제도에 큰 영향을 미친다.
규제 및 표준화: 각국 정부는 자율주행차의 안전성 확보를 위한 규제 프레임워크를 마련하고 있으며, 국제적인 표준화 노력도 진행 중이다. 하지만 기술 발전 속도에 맞춰 법규를 정비하는 것이 쉽지 않다.
윤리적 딜레마 (Trolley Problem): 피할 수 없는 사고 상황에서 자율주행차가 누구의 생명을 우선시해야 하는가와 같은 윤리적 딜레마는 사회적 합의가 필요한 부분이다. 예를 들어, 보행자와 탑승자 중 누구를 보호할 것인가와 같은 문제는 시스템 설계에 있어 중요한 고려 사항이다.
데이터 프라이버시: 자율주행차는 운전자의 이동 경로, 습관 등 민감한 개인 정보를 수집할 수 있다. 이러한 데이터의 수집, 저장, 활용에 대한 투명성과 보안성 확보가 중요하다.
6. 자율주행 기술의 미래 전망 및 기대 효과
자율주행 기술은 미래 사회의 모습을 근본적으로 변화시킬 잠재력을 가지고 있으며, 다양한 분야에서 혁신적인 기대 효과를 가져올 것으로 전망된다.
6.1. 미래 사회 변화 예측
교통 시스템의 혁신: 완전 자율주행 시대가 도래하면 교통 체증이 크게 감소하고, 교통 흐름이 최적화될 것이다. 차량 간 통신(V2V)과 인프라 통신(V2I)을 통해 도로 위의 모든 차량이 유기적으로 연결되어 효율적인 운행이 가능해진다. 또한, 주차 공간 활용의 효율성이 증대되고, 개인 차량 소유의 필요성이 줄어들며 공유 모빌리티 서비스가 더욱 활성화될 수 있다.
도시 계획 및 인프라 변화: 자율주행차에 최적화된 스마트 도시 인프라가 구축될 것이다. 이는 도로 설계, 신호 체계, 주차 공간 등 도시 전반의 변화를 유도하며, 대중교통 시스템과의 연계를 통해 도시 이동성을 극대화할 수 있다.
경제 및 고용 시장 영향: 물류 및 운송 산업의 효율성이 극대화되어 비용 절감 효과가 발생할 것이다. 새로운 모빌리티 서비스 시장이 창출되고 관련 산업이 성장할 것으로 예상된다. 반면, 전문 운전자 직업(택시, 트럭, 버스 기사 등)의 감소 가능성도 제기되어, 이에 대한 사회적 대비가 필요하다.
개인의 삶의 질 향상: 운전으로부터 자유로워진 시간은 개인의 생산성 향상이나 여가 활동에 활용될 수 있다. 이동 약자(노약자, 장애인)의 이동권이 크게 확대되며, 교통사고 감소로 인한 사회적 비용 절감 및 생명 보호 효과도 기대된다.
6.2. 완전 자율주행 시대의 도래 시점 및 과제
전문가들은 레벨 5 완전 자율주행의 상용화 시점에 대해 다양한 예측을 내놓고 있다. 일부는 2030년대 중반 이후로 예상하며, 기술적 난제와 사회적 합의가 필요함을 강조한다. 특히, 모든 기상 조건과 모든 도로 환경에서 인간 운전자를 능가하는 안전성을 확보하는 것이 가장 큰 과제이다.
또한, 앞서 언급된 기술적, 법적, 윤리적 과제들을 해결하기 위한 지속적인 연구 개발과 국제적인 협력, 그리고 사회적 논의가 필수적이다. 특히, 자율주행 시스템의 투명성과 신뢰성을 확보하고, 사고 발생 시 책임 소재를 명확히 하며, 윤리적 기준을 수립하는 것이 중요하다.
6.3. 윤리적 논의의 중요성
자율주행 기술은 단순한 공학적 문제를 넘어 사회 전체의 가치관과 윤리적 판단에 영향을 미친다. '트롤리 딜레마'와 같은 극단적인 상황뿐만 아니라, 시스템의 편향성, 데이터 프라이버시, 인간과 기계의 상호작용 방식 등 다양한 윤리적 질문에 대한 답을 찾아야 한다. 기술 개발 단계부터 사회 각계각층의 참여를 통해 윤리적 가이드라인을 수립하고, 기술이 인간의 존엄성과 안전을 최우선으로 하도록 설계하는 노력이 지속되어야 할 것이다.
자율주행 기술은 인류에게 전례 없는 이동의 자유와 편의를 제공할 잠재력을 가지고 있다. 기술의 발전과 함께 사회적 합의와 제도적 정비가 조화를 이룰 때, 우리는 비로소 안전하고 지속 가능한 자율주행 시대를 맞이할 수 있을 것이다.
참고 문헌
SAE International. (2021). J3016_202104: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.
National Highway Traffic Safety Administration (NHTSA). (2022). Automated Vehicles for Safety. Retrieved from https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
Mercedes-Benz. (2023). DRIVE PILOT. Retrieved from https://www.mercedes-benz.com/en/innovation/drive-pilot/
Carnegie Mellon University. (n.d.). ALVINN. Retrieved from https://www.cs.cmu.edu/~tjochem/alvinn/alvinn.html
DARPA. (n.d.). Grand Challenge. Retrieved from https://www.darpa.mil/about-us/timeline/grand-challenge
Waymo. (n.d.). Our history. Retrieved from https://waymo.com/journey/
Cruise. (2023). Cruise Origin. Retrieved from https://www.getcruise.com/origin/
Mobileye. (2023). Mobileye SuperVision™ and Mobileye Chauffeur™. Retrieved from https://www.mobileye.com/our-technology/mobileye-supervision-and-mobileye-chauffeur/
Kim, J. H., & Kim, J. H. (2022). A Review of Sensor Fusion Techniques for Autonomous Driving. Journal of Advanced Transportation, 2022.
Chen, X., et al. (2023). Deep Learning for Autonomous Driving: A Survey. IEEE Transactions on Intelligent Transportation Systems, 24(1), 1-20.
Jo, K., et al. (2022). High-Definition Map Generation and Localization for Autonomous Driving: A Survey. Sensors, 22(1), 321.
Guldner, S., et al. (2021). Drive-by-Wire Systems for Autonomous Vehicles: A Review. SAE Technical Paper, 2021-01-0863.
Tesla. (n.d.). Autopilot and Full Self-Driving Capability. Retrieved from https://www.tesla.com/autopilot
Baidu Apollo. (n.d.). Robotaxi. Retrieved from https://apollo.baidu.com/robotaxi
국토교통부. (2023). 자율주행 셔틀 서비스 확대.
TuSimple. (n.d.). Autonomous Freight Network. Retrieved from https://www.tusimple.com/technology/autonomous-freight-network
우아한형제들. (n.d.). 배달의민족 자율주행 로봇 '딜리'. Retrieved from https://www.woowahan.com/tech/robot-delivery
Siemens Mobility. (n.d.). Automated Train Operation. Retrieved from https://www.siemens.com/global/en/products/mobility/rail-solutions/automation/automated-train-operation.html
Airbus. (n.d.). Urban Air Mobility. Retrieved from https://www.airbus.com/en/innovation/future-mobility/urban-air-mobility
Avikus. (n.d.). Autonomous Navigation. Retrieved from https://www.avikus.ai/technology/autonomous-navigation
Honda. (2021). Honda SENSING Elite. Retrieved from https://global.honda/newsroom/news/2021/4210304eng.html
Deloitte. (2023). The future of mobility: Autonomous vehicles. Retrieved from https://www2.deloitte.com/us/en/pages/manufacturing/articles/future-of-mobility-autonomous-vehicles.html
Badue, C., et al. (2021). Self-Driving Cars: A Survey. Expert Systems with Applications, 165, 113812.
European Union Agency for Cybersecurity (ENISA). (2022). Cybersecurity of Autonomous Vehicles. Retrieved from https://www.enisa.europa.eu/publications/cybersecurity-of-autonomous-vehicles
Fagnant, D. J., & Kockelman, K. (2021). Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations. Transportation Research Part A: Policy and Practice, 144, 1-14.
Bonnefon, J. F., et al. (2016). The social dilemma of autonomous vehicles. Science, 352(6293), 1573-1576.
McKinsey & Company. (2023). Autonomous driving: The path to adoption. Retrieved from https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-driving-the-path-to-adoption
KPMG. (2022). Autonomous Vehicles Readiness Index. Retrieved from https://kpmg.com/xx/en/home/insights/2022/07/autonomous-vehicles-readiness-index.html
Gartner. (2023). Hype Cycle for Automotive and Smart Mobility.
기업은 지역사회의 지지를 얻고 최고 수준의 안전 기준을 지킨다는 점을 증명해야 한다. 뉴욕주 운수국(DMV), 교통부(DOT), 주경찰 등 여러 기관이 심사에 참여할 예정이다. 이러한 절차는 안전을 확인하고 주민들이 자율주행차를 안심하고 받아들이게 하는 중요한 단계다.
자율주행 기업 ‘웨이모
웨이모
웨이모(Waymo)는 알파벳(Alphabet) 산하 자율주행 기술 기업으로, 자율주행 시스템인 Waymo Driver를 기반으로
일반 대중이 이용 가능한 로보택시(무인 호출형 차량) 서비스를 운영한다. 대표 서비스명은 Waymo One이며,
미국 주요 도시에서 상업 운행을 확장해 왔다.
새로운 목차
1. 개요: 웨이모와 Waymo One
2. 핵심 기술: Waymo Driver, 센서·지도·데이터
3. 서비스 운영과 주행 테스트: 서비스 지역, 파트너십, 확장
4. 역사와 시제품: 구글 프로젝트에서 6세대 하드웨어까지
5. 법률·사고·논란: 규제 체계, 리콜, 사회적 쟁점
1. 개요: 웨이모와 Waymo One
웨이모는 무인 자율주행을 목표로 하는 상용 서비스를 중심에 두고 있으며, 이용자는 앱을 통해 차량을 호출해 이동한다.
서비스는 24시간 운영을 표방하며, 도시별로 운행 가능 구역(지오펜스)을 설정해 운행 안전성과 운영 효율을 관리한다.
일부 도시는 자사 앱이 아닌 외부 플랫폼과의 연계를 통해 이용 경험을 제공하기도 한다.
2. 핵심 기술: Waymo Driver, 센서·지도·데이터
2.1 센서 융합과 인지(Perception)
웨이모의 자율주행은 카메라, 라이다(LiDAR), 레이더(Radar) 등 다중 센서의 정보를 결합(센서 융합)해 주변 객체와 도로 상황을 인지하고,
주행 경로를 계획한 뒤 차량을 제어하는 방식으로 설명된다. 웨이모는 자사 공개 자료에서 라이다의 3차원 환경 인지, 카메라의 360도 시야,
레이더의 속도·거리 측정 등 센서별 역할을 구분해 안내한다.
2.2 6세대(6th-gen) Waymo Driver 하드웨어
웨이모는 6세대 자율주행 하드웨어를 공개하며, 비용 최적화와 성능 향상을 목표로 한 센서 구성을 제시했다.
공개된 사양에는 13대 카메라, 4대 라이다, 6대 레이더 및 외부 음향 수신 장치 등이 포함된다.
또한 혹한·우천 등 환경 대응을 위해 센서에 와이퍼, 히터, 분사 장치와 같은 물리적 보조 장치를 적용하는 방향이 언급된다.
2.3 고정밀 지도(HD Map)와 운영 데이터
웨이모 계열 접근법의 핵심 요소로는 고정밀 지도와 실시간 센서 데이터의 정합을 통한 위치 추정 및 안전 주행이 자주 거론된다.
한편, 웨이모는 학계·산업 생태계와의 접점을 위해 Waymo Open Dataset을 제공해 인지·추적 등 연구 과제의 벤치마크를 확산시켜 왔다.
이는 기술 검증과 인재·연구 커뮤니티 형성 측면에서 간접적인 경쟁력으로 작동한다.
2.4 특허 출원과 지식재산 전략(개요)
자율주행 산업에서는 센서 설계, 지도 제작·갱신, 인지·예측 알고리즘, 차량-관제 연동 등 다양한 층위에서 지식재산(IP)이 형성된다.
웨이모의 경우, 외부적으로는 기술 공개와 상용 서비스 확대를 병행하면서도, 분쟁(영업비밀·특허 등)을 통해
핵심 기술의 보호 범위를 다투는 양상이 확인되어 왔다.
3. 서비스 운영과 주행 테스트: 서비스 지역, 파트너십, 확장
3.1 운영 지역(서비스 에어리어)
웨이모는 미국에서 여러 도시를 중심으로 로보택시 서비스를 운영해 왔으며,
공식 안내 자료에서는 샌프란시스코 베이 에어리어, 피닉스, 로스앤젤레스 등이 핵심 서비스 권역으로 제시된다.
또한 오스틴과 애틀랜타에서는 우버(Uber) 플랫폼을 통해 웨이모를 경험하는 형태가 안내된다.
3.2 운영 방식: 지오펜스, 단계적 확장, 고속도로(프리웨이) 적용
웨이모 운영의 일반적 특징은 (1) 제한된 구역에서의 안정적 운행, (2) 데이터 축적과 소프트웨어 업데이트,
(3) 구역·시간대·도로 유형의 점진적 확대이다. 웨이모는 2025년 회고 성격의 공식 글에서
일부 도시에서 고속도로 주행 경험을 제공하고, 이후 더 많은 도시로 확대할 계획을 언급했다.
3.3 파트너십: 차량 플랫폼과 호출 플랫폼
로보택시 사업은 자율주행 소프트웨어만으로 완결되지 않으며, 차량 플랫폼(차종·전장 설계)과
호출·결제·고객지원 플랫폼의 결합이 중요하다. 웨이모는 기존 차량(예: 전기 SUV)을 기반으로 운용해 왔고,
최근에는 특정 목적형 로보택시 플랫폼을 도입하는 방향도 보도되었다.
4. 역사와 시제품: 구글 프로젝트에서 6세대 하드웨어까지
4.1 출발점과 분사
웨이모의 기원은 구글의 자율주행차 프로젝트로 거슬러 올라가며, 이후 알파벳 체제에서 독립 법인 형태로 정리되었다.
초기에는 실험용 차량(개조 차량, 시범 운행) 중심으로 기술 성숙을 추구했고, 시간이 지나며 유료 승객 대상 상용 서비스로 전환됐다.
4.2 상용 로보택시로의 전환
상용 전환의 핵심은 “기술 시연”에서 “운영 품질”로의 무게 중심 이동이다.
즉, 승객 안전 계획, 원격 지원 체계, 차량 유지보수, 운영 지역 내 예외 상황 대응 등 도시 단위의 운영 역량이 경쟁의 일부가 된다.
4.3 시제품 및 차세대 로보택시(Ojai 등)
2026년 CES 국면에서 웨이모의 차세대 로보택시로 보도된 ‘Ojai’는 특정 제조사와의 협업을 통해 제작되는
목적형 전기 밴 형태로 소개되었다. 보도에 따르면 차량은 해외에서 조립된 뒤 미국에서 웨이모의 6세대 자율주행 하드웨어가 통합되는 방식이 언급되며, 웨이모는 기존 운영 도시 외에 다수 도시로 확장을 시사한 바 있다.
5. 법률·사고·논란: 규제 체계, 리콜, 사회적 쟁점
5.1 규제 구조: 캘리포니아 DMV·CPUC의 이원 체계
캘리포니아에서는 자율주행차의 시험·배치(테스트/디플로이먼트) 허가를 주로 DMV가 다루고, 유상 여객 운송과 관련한 프로그램·보고 의무 등은 CPUC 프로그램 구조 안에서 운영되는 것으로 안내된다.
실제로 웨이모의 운행 가능 구역 확대는 DMV 문서에서 허가·갱신 형태로 공지되며, CPUC는 승객 안전 계획 및 정기 보고와 같은 틀을 제시한다.
5.2 리콜과 소프트웨어 업데이트
자율주행 시스템은 소프트웨어가 안전 성능에 직접적인 영향을 미치기 때문에, 결함 가능성이 확인되면 대규모 소프트웨어 업데이트 또는 리콜 형태로 시정되는 사례가 발생한다.
웨이모는 2024년 2월 “이전 소프트웨어”에 대한 자발적 리콜(업데이트)을 공지했으며, 2025년에는 미국 도로교통안전국(NHTSA) 리콜 문서에서도 소프트웨어 업데이트를 통한 시정 내용이 확인된다.
5.3 사고·운영 장애와 안전성 논쟁
로보택시는 실제 도로 환경의 예외 상황(공사 구간 변화, 신호 장애, 돌발 객체 등)에서 운영 안정성이 시험대에 오른다.
2025년 말 샌프란시스코의 대규모 정전 상황에서 웨이모 차량이 교차로 등에서 운행 장애를 일으켜 교통 및 긴급차량 통행에 영향을 주었다는 보도가 있었고, 2026년 1월에는 규제 강화를 요구하는 운전기사 단체의 시위가 보도되며 사회적 갈등이 부각되었다.
또한 피닉스에서 차량이 경전철 선로 위에 정차해 승객이 대피하는 영상이 보도되는 등, 개별 사건이 기술 신뢰도 논쟁으로 연결되는 양상이 나타난다.
5.4 법률 분쟁: 영업비밀(트레이드 시크릿) 소송의 의미
웨이모는 자율주행 라이다 등 핵심 기술을 둘러싼 영업비밀 분쟁의 대표 사례로 자주 언급되는 웨이모-우버 소송을 겪었으며, 2018년 합의로 종료되었다.
이 사건은 자율주행 산업에서 인력 이동, 부품 설계, 소프트웨어 자산이 기업 경쟁력의 핵심이라는 점을 사회적으로 각인시킨 사례로 평가된다.
출처
Waymo 공식 웹사이트(서비스 운영 도시 안내): https://waymo.com/
Waymo 고객지원(서비스 에어리어): https://support.google.com/waymo/answer/9059119?hl=en
Waymo 블로그(6세대 Waymo Driver 소개, 2024-08-19): https://waymo.com/blog/2024/08/meet-the-6th-generation-waymo-driver
Waymo 블로그(자발적 리콜 공지, 2024-02-13): https://waymo.com/blog/2024/02/voluntary-recall-of-our-previous-software
NHTSA 리콜 문서(Part 573 Safety Recall Report 25E-034, PDF): https://static.nhtsa.gov/odi/rcl/2025/RCLRPT-25E034-2471.PDF
California DMV(자율주행 프로그램 안내): https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/
California DMV(웨이모 허가 구역/확장 공지): https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-testing-permit-holders/waymo-approved-areas-of-operation-for-driverless-testing-and-deployment/
California Public Utilities Commission(CPUC, AV 승객 서비스 프로그램): https://www.cpuc.ca.gov/regulatory-services/licensing/transportation-licensing-and-analysis-branch/autonomous-vehicle-programs
California Public Utilities Commission(CPUC, 분기 보고 안내): https://www.cpuc.ca.gov/regulatory-services/licensing/transportation-licensing-and-analysis-branch/autonomous-vehicle-programs/quarterly-reporting
AP News(샌프란시스코 시위 및 규제 논의 보도, 2026-01-09): https://apnews.com/article/ae899573f4b12aa1844656fa5f7365ec
San Francisco Chronicle(정전 시 웨이모 운영 장애 보도, 2026-01): https://www.sfchronicle.com/sf/article/daniel-lurie-waymo-blackouts-pge-21282099.php
PEOPLE(피닉스 경전철 선로 정차 사건 보도, 2026-01): https://people.com/passenger-forced-to-flee-self-driving-vehicle-after-stops-path-of-an-oncoming-train-11884070
The Guardian(웨이모-우버 합의 보도, 2018-02-09): https://www.theguardian.com/us-news/2018/feb/09/uber-waymo-reach-settlement-trade-secrets-trial
Uber Newsroom(웨이모-우버 합의 공지, 2018-02-09): https://www.uber.com/en-NO/newsroom/uber-waymo-settlement/
arXiv / CVPR 2020(웨이모 오픈 데이터셋 논문 PDF): https://openaccess.thecvf.com/content_CVPR_2020/papers/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.pdf
Car and Driver(차세대 로보택시 Ojai 보도, 2026-01): https://www.caranddriver.com/news/a69938250/waymo-ojai-autonomous-robotaxi-details/
’는 이미 맨해튼과 브루클린 시내에서 최대 8대의 재규어 차량을 시험 운행하고 있다. 안전을 위해 운전자가 함께 타는 방식이다. 2025년 8월에 시작한 이 테스트는 2026년 3월 31일까지 기간을 늘렸다. 웨이모는 자율주행 기술이 뉴욕을 더 안전하고 편리한 곳으로 만들 것이라고 강조한다. 자율주행
자율주행
목차
1. 자율주행의 개념 및 분류
2. 자율주행 기술의 역사와 발전 과정
3. 자율주행의 핵심 기술 및 원리
4. 주요 활용 사례 및 응용 분야
5. 현재 동향 및 상용화 수준
6. 자율주행 기술의 미래 전망 및 기대 효과
1. 자율주행의 개념 및 분류
자율주행은 차량이 운전자의 조작 없이 주변 환경을 인지하고, 주행 상황을 판단하며, 스스로 차량을 제어하여 목적지까지 이동하는 기술을 의미한다. 이는 단순한 운전자 보조 시스템을 넘어, 차량 자체의 지능적인 판단과 행동을 통해 안전하고 효율적인 이동을 구현하는 것을 목표로 한다. 자율주행 기술은 그 발전 수준에 따라 국제적으로 표준화된 분류 체계를 따르는데, 이는 미국 자동차 공학회(SAE, Society of Automotive Engineers)에서 정의한 6단계(레벨 0~5) 분류가 가장 널리 사용된다.
1.1. SAE 자율주행 레벨 분류
SAE 분류는 주행 중 운전자의 개입 정도와 시스템이 담당하는 주행 기능의 범위를 기준으로 자율주행 단계를 나눈다. 각 레벨은 다음과 같다.
레벨 0 (자동화 없음, No Automation): 운전자가 모든 주행 기능을 직접 제어하는 단계이다. 차량은 어떠한 자율주행 기능도 제공하지 않는다.
레벨 1 (운전자 보조, Driver Assistance): 특정 주행 모드에서 시스템이 운전자를 보조하는 단계이다. 예를 들어, 어댑티브 크루즈 컨트롤(ACC)이나 차선 유지 보조(LKA) 기능이 이에 해당한다. 운전자는 여전히 주변 환경을 주시하고, 언제든 차량 제어권을 넘겨받을 준비를 해야 한다.
레벨 2 (부분 자동화, Partial Automation): 시스템이 조향과 가감속 등 두 가지 이상의 주행 기능을 동시에 수행하는 단계이다. 테슬라의 오토파일럿이나 현대차의 고속도로 주행 보조(HDA) 등이 대표적이다. 하지만 운전자는 여전히 주행 환경을 모니터링하고, 시스템이 요청하거나 비상 상황 발생 시 즉시 개입해야 한다.
레벨 3 (조건부 자동화, Conditional Automation): 특정 조건 하에서 시스템이 모든 주행 기능을 수행하고 주변 환경을 모니터링하는 단계이다. 운전자는 시스템이 안전하게 작동할 수 있는 특정 조건(예: 고속도로 주행) 내에서는 운전에서 자유로울 수 있다. 그러나 시스템이 주행 불가능 상황을 감지하고 운전자에게 개입을 요청하면, 운전자는 제한된 시간 내에 제어권을 넘겨받아야 한다. 혼다의 레전드와 메르세데스-벤츠의 드라이브 파일럿이 레벨 3 시스템을 상용화한 사례이다.
레벨 4 (고도 자동화, High Automation): 특정 운행 설계 영역(ODD, Operational Design Domain) 내에서 시스템이 모든 주행 기능을 수행하며, 운전자의 개입 없이 비상 상황에도 스스로 대처할 수 있는 단계이다. 운전자는 ODD 내에서는 운전석에 앉아있을 필요조차 없으며, 시스템이 운행 불가능 상황을 감지하더라도 안전하게 차량을 정지시킬 수 있다. 로보택시 서비스 등이 레벨 4를 목표로 개발되고 있다.
레벨 5 (완전 자동화, Full Automation): 모든 도로 조건과 환경에서 시스템이 모든 주행 기능을 수행하는 단계이다. 운전자의 개입이 전혀 필요 없으며, 사실상 운전대나 페달이 없는 차량도 가능해진다. 이는 인간 운전자가 할 수 있는 모든 주행을 시스템이 완벽하게 대체하는 궁극적인 자율주행 단계이다.
2. 자율주행 기술의 역사와 발전 과정
자율주행 기술의 역사는 20세기 중반으로 거슬러 올라간다. 초기에는 주로 군사적 목적이나 자동화된 운송 시스템 연구의 일환으로 시작되었다.
2.1. 초기 연구 및 개념 정립 (1950년대 ~ 1980년대)
1950년대에는 제너럴 모터스(GM)가 '미래의 고속도로(Future Highway)'라는 개념을 제시하며, 도로에 매설된 전선을 통해 차량을 제어하는 아이디어를 선보였다. 이는 오늘날 자율주행의 초기 구상으로 볼 수 있다. 1980년대에는 카네기 멜론 대학교의 ALVINN(Autonomous Land Vehicle In a Neural Network) 프로젝트가 신경망을 이용해 도로를 인식하고 주행하는 연구를 진행하며 인공지능의 가능성을 보여주었다.
2.2. DARPA 챌린지 및 센서 기술 발전 (2000년대)
자율주행 기술 발전에 결정적인 전환점이 된 것은 미국 국방부 산하 방위고등연구계획국(DARPA)이 주최한 'DARPA 그랜드 챌린지'와 '어반 챌린지'이다. 2004년부터 시작된 이 대회들은 무인 차량이 사막이나 도시 환경에서 정해진 코스를 완주하는 것을 목표로 했으며, 라이다(LiDAR), 레이더(Radar), 카메라 등 다양한 센서 기술과 인공지능 기반의 환경 인식 및 경로 계획 기술 발전을 촉진했다. 스탠퍼드 대학교의 '스탠리(Stanley)'와 카네기 멜론 대학교의 '보스(Boss)' 등이 이 대회를 통해 자율주행 기술의 실현 가능성을 입증했다.
2.3. 인공지능 및 빅데이터 도입 (2010년대)
2010년대에 들어서면서 딥러닝을 비롯한 인공지능 기술의 비약적인 발전과 컴퓨팅 파워의 증가는 자율주행 기술 발전에 가속도를 붙였다. 구글(현 웨이모)은 2009년부터 자율주행차 프로젝트를 시작하며 실제 도로 주행 데이터를 대규모로 수집하고, 이를 기반으로 인공지능 알고리즘을 고도화했다. 테슬라는 카메라 기반의 비전 시스템과 인공지능을 활용한 자율주행 기술을 개발하며 상용차에 적용하기 시작했다. 이 시기에는 고정밀 지도 기술과 V2X(Vehicle-to-everything) 통신 기술의 중요성도 부각되었다.
2.4. 상용화 경쟁 심화 (2020년대 이후)
현재는 레벨 2, 3 수준의 자율주행 기능이 상용차에 폭넓게 적용되고 있으며, 레벨 4 수준의 로보택시 서비스가 일부 지역에서 시범 운영되거나 상용화 초기 단계에 진입했다. 웨이모, 크루즈(Cruise), 바이두(Baidu) 등은 특정 지역에서 운전자 없는 로보택시 서비스를 제공하며 기술의 안정성과 신뢰성을 입증하고 있다. 완성차 제조사들은 물론, 엔비디아(NVIDIA), 인텔(Intel) 모빌아이(Mobileye)와 같은 반도체 및 소프트웨어 기업들도 자율주행 시장의 주도권을 잡기 위해 치열하게 경쟁하고 있다.
3. 자율주행의 핵심 기술 및 원리
자율주행 시스템은 크게 주변 환경을 인지하는 센서, 수집된 데이터를 분석하고 판단하는 인공지능, 정확한 위치를 파악하는 고정밀 지도 및 측위 기술, 그리고 차량을 제어하는 제어 시스템으로 구성된다. 이 네 가지 핵심 기술이 유기적으로 결합하여 자율주행을 가능하게 한다.
3.1. 환경 인지 센서 기술
자율주행차는 사람의 눈과 같은 역할을 하는 다양한 센서를 통해 주변 환경을 인식한다.
카메라 (Camera): 차량 주변의 시각 정보를 수집하여 차선, 신호등, 표지판, 보행자, 다른 차량 등을 식별한다. 색상 정보를 얻을 수 있고 비용이 저렴하며 해상도가 높다는 장점이 있지만, 빛의 변화(역광, 터널), 날씨(안개, 비, 눈)에 취약하다는 단점이 있다.
레이더 (Radar): 전파를 발사하여 물체에 반사되어 돌아오는 시간을 측정해 물체와의 거리, 속도, 방향을 감지한다. 날씨 변화에 강하고 장거리 감지에 유리하며, 특히 전방 충돌 방지 시스템(FCW)이나 어댑티브 크루즈 컨트롤(ACC)에 필수적으로 사용된다. 하지만 물체의 형상을 정확히 파악하기 어렵다는 한계가 있다.
라이다 (LiDAR): 레이저 펄스를 발사하여 반사되는 시간을 측정해 주변 환경의 3D 지도를 생성한다. 매우 정밀한 거리 및 형태 정보를 제공하며, 야간에도 뛰어난 성능을 발휘한다. 자율주행차의 '눈' 또는 '뇌'의 핵심 센서로 불리지만, 높은 비용과 날씨에 따른 성능 저하 가능성이 단점으로 지적된다.
초음파 센서 (Ultrasonic Sensor): 주로 근거리 물체 감지에 사용되며, 주차 보조 시스템이나 저속 주행 시 장애물 감지에 활용된다.
3.2. 인공지능 및 머신러닝
다양한 센서에서 수집된 방대한 데이터는 인공지능(AI)과 머신러닝(ML) 알고리즘을 통해 분석되고 해석된다. 이는 자율주행차의 '뇌' 역할을 한다.
데이터 융합 (Sensor Fusion): 각 센서의 장단점을 보완하기 위해 여러 센서에서 얻은 데이터를 통합하여 보다 정확하고 신뢰성 있는 환경 모델을 구축한다. 예를 들어, 카메라의 시각 정보와 라이다의 3D 거리 정보를 결합하여 물체의 종류와 위치를 더욱 정확하게 파악한다.
객체 인식 및 분류 (Object Detection & Classification): 딥러닝 기반의 컴퓨터 비전 기술을 활용하여 이미지 및 3D 포인트 클라우드 데이터에서 차량, 보행자, 자전거, 차선, 신호등 등을 실시간으로 감지하고 분류한다.
경로 계획 및 의사 결정 (Path Planning & Decision Making): 인식된 환경 정보와 고정밀 지도를 바탕으로 안전하고 효율적인 주행 경로를 계획한다. 이는 예측 알고리즘을 통해 다른 차량이나 보행자의 움직임을 예측하고, 이에 따라 차선 변경, 속도 조절, 정지 등의 의사결정을 내리는 과정을 포함한다. 강화 학습(Reinforcement Learning)과 같은 고급 AI 기술이 활용되기도 한다.
3.3. 고정밀 지도 및 측위 기술
자율주행차는 정확한 위치 파악과 주변 환경에 대한 상세한 정보를 위해 고정밀 지도(HD Map)와 정밀 측위 기술을 필요로 한다.
고정밀 지도 (HD Map): 일반 내비게이션 지도보다 훨씬 정밀한 정보를 제공한다. 차선 정보, 도로 경계, 신호등 위치, 표지판, 노면 표시, 심지어 가로수나 건물과 같은 주변 지형지물까지 센티미터 단위의 정확도로 포함한다. 이는 센서의 한계를 보완하고, 차량이 현재 위치를 정확히 파악하며, 미리 경로를 계획하는 데 필수적이다.
정밀 측위 (Precise Positioning): GPS(GNSS) 신호와 함께 IMU(관성 측정 장치), 휠 속도 센서, 카메라, 라이다 등 다양한 센서 데이터를 융합하여 차량의 정확한 위치를 실시간으로 파악한다. 특히 RTK(Real-Time Kinematic) GPS나 PPP(Precise Point Positioning)와 같은 기술은 GPS 오차를 보정하여 수 센티미터 수준의 정밀한 위치 정보를 제공한다.
3.4. 제어 시스템 (Drive-by-Wire)
자율주행 시스템의 판단과 계획에 따라 차량을 실제로 움직이는 것이 제어 시스템이다. 이는 'Drive-by-Wire' 기술을 기반으로 한다.
전자식 제어 (Electronic Control): 기존의 기계식 연결(스티어링 휠과 바퀴, 브레이크 페달과 브레이크 등)을 전기 신호로 대체하는 기술이다. 스티어 바이 와이어(Steer-by-Wire), 브레이크 바이 와이어(Brake-by-Wire), 스로틀 바이 와이어(Throttle-by-Wire) 등이 이에 해당한다. 이를 통해 자율주행 시스템이 차량의 조향, 가속, 제동을 정밀하게 제어할 수 있게 된다.
차량 동역학 제어 (Vehicle Dynamics Control): 차량의 안정성과 승차감을 유지하면서 경로를 정확하게 추종하도록 제어한다. 이는 속도 제어, 차선 유지 제어, 장애물 회피 제어 등 다양한 하위 제어 알고리즘을 포함한다.
4. 주요 활용 사례 및 응용 분야
자율주행 기술은 단순히 개인 승용차를 넘어 다양한 운송 및 물류 분야에서 혁신적인 변화를 가져오고 있다.
4.1. 승용차 및 대중교통
개인 승용차: 현재 레벨 2 수준의 자율주행 기능(고속도로 주행 보조, 차선 변경 보조 등)이 고급차종을 중심으로 보편화되고 있으며, 테슬라와 같은 일부 제조사는 레벨 3에 준하는 기능을 제공하며 운전자의 편의성을 높이고 있다. 미래에는 완전 자율주행 승용차가 보편화되어 운전자가 운전에서 완전히 해방되는 시대를 열 것으로 기대된다.
로보택시 (Robotaxi): 레벨 4 수준의 자율주행 기술을 기반으로 운전자 없이 승객을 운송하는 서비스이다. 웨이모(Waymo), 크루즈(Cruise), 바이두(Baidu) 등은 미국 피닉스, 샌프란시스코, 중국 베이징 등 일부 도시에서 로보택시 서비스를 상용화하거나 시범 운영하고 있다. 이는 대중교통의 효율성을 높이고, 이동 약자의 접근성을 개선하며, 교통 체증 및 주차 문제 해결에 기여할 것으로 보인다.
자율주행 셔틀: 특정 구간을 정기적으로 운행하는 자율주행 셔틀버스도 상용화되고 있다. 공항, 대학 캠퍼스, 산업 단지, 신도시 등에서 고정된 노선을 운행하며 대중교통의 보조적인 역할을 수행한다. 국내에서도 세종시, 순천만국가정원 등에서 자율주행 셔틀이 운영된 바 있다.
4.2. 물류 및 배송
자율주행 트럭: 장거리 운송에 특화된 자율주행 트럭은 물류 비용 절감, 운전자 피로도 감소, 운행 시간 증대 등의 이점을 제공한다. 투심플(TuSimple), 오로라(Aurora) 등은 고속도로를 중심으로 자율주행 트럭 운송 서비스를 개발 및 시범 운영하고 있다.
배송 로봇: 라스트마일(Last-mile) 배송에 활용되는 자율주행 배송 로봇은 도심이나 아파트 단지 내에서 소규모 물품을 배송한다. 이는 인력난 해소와 배송 효율성 증대에 기여하며, 국내에서도 우아한형제들의 '딜리'와 같은 배송 로봇이 시범 운영되고 있다.
4.3. 기타 운송수단
철도: 지하철, 경전철 등 도시 철도 시스템에서는 이미 높은 수준의 무인 운전 시스템이 적용되고 있다. 이는 정시성 확보와 운영 효율성 증대에 크게 기여한다.
항공기: 항공기는 이륙 및 착륙 시 조종사의 개입이 필요하지만, 순항 비행 중에는 오토파일럿 시스템을 통해 상당 부분 자율 비행이 이루어진다. 미래에는 완전 자율 비행 항공기 및 드론 택시(UAM) 개발이 활발히 진행될 것으로 예상된다.
선박: 자율운항 선박은 항해 중 충돌 회피, 경로 최적화, 연료 효율 증대 등을 목표로 개발되고 있다. 현대중공업그룹의 아비커스(Avikus)는 대형 선박의 자율운항 솔루션을 개발하며 상용화를 추진 중이다.
5. 현재 동향 및 상용화 수준
현재 자율주행 기술은 빠른 속도로 발전하며 상용화 단계를 밟고 있으나, 완전 자율주행(레벨 5)에 도달하기까지는 여전히 많은 과제가 남아있다.
5.1. 상용화 현황 및 주요 기업 경쟁
현재 시장에서는 레벨 2 수준의 자율주행 기능이 보편화되어 신차 구매 시 쉽게 접할 수 있다. 고속도로 주행 보조(HDA), 차선 유지 보조(LKA), 어댑티브 크루즈 컨트롤(ACC) 등이 대표적이다. 레벨 3 자율주행은 특정 조건(예: 고속도로 정체 구간)에서 운전자의 개입 없이 주행이 가능한 수준으로, 메르세데스-벤츠의 '드라이브 파일럿'과 혼다의 '레전드'가 일본과 독일 등 일부 국가에서 상용화되었다.
레벨 4 자율주행은 특정 운행 설계 영역(ODD) 내에서 운전자 개입 없이 완전 자율주행이 가능한 단계로, 웨이모(Waymo)와 크루즈(Cruise)가 미국 피닉스, 샌프란시스코 등에서 로보택시 서비스를 운영하며 선두를 달리고 있다. 중국에서는 바이두(Baidu)의 아폴로(Apollo)가 우한, 충칭 등에서 로보택시를 운영 중이다.
주요 완성차 제조사들은 물론, 구글 웨이모, GM 크루즈, 바이두, 그리고 엔비디아, 인텔 모빌아이와 같은 기술 기업들이 자율주행 소프트웨어 및 하드웨어 개발에 막대한 투자를 하며 치열한 경쟁을 벌이고 있다. 특히 소프트웨어 정의 차량(SDV)으로의 전환이 가속화되면서, 자율주행 기술은 차량의 핵심 경쟁력으로 부상하고 있다.
5.2. 기술적 도전 과제
자율주행 기술의 완전한 상용화를 위해서는 여전히 해결해야 할 기술적 난제들이 많다.
악천후 및 비정형 환경 대응: 폭우, 폭설, 짙은 안개 등 악천후 상황에서는 센서의 인지 능력이 크게 저하될 수 있다. 또한, 공사 구간, 비포장도로, 예측 불가능한 보행자 행동 등 비정형적인 주행 환경에서의 안정적인 대응 능력 확보가 중요하다.
엣지 케이스 (Edge Cases) 처리: 일반적이지 않고 드물게 발생하는 '엣지 케이스' 상황(예: 도로 위의 특이한 물체, 비정상적인 교통 흐름)에 대한 시스템의 판단 및 대응 능력 강화가 필요하다. 이를 위해 방대한 양의 실제 주행 데이터와 시뮬레이션 데이터를 활용한 학습이 필수적이다.
사이버 보안: 자율주행차는 외부 네트워크에 연결되어 해킹의 위협에 노출될 수 있다. 차량 제어 시스템에 대한 사이버 공격은 심각한 안전 문제를 야기할 수 있으므로, 강력한 보안 시스템 구축이 필수적이다.
높은 컴퓨팅 파워 및 전력 소모: 복잡한 인공지능 알고리즘과 수많은 센서 데이터를 실시간으로 처리하기 위해서는 고성능 컴퓨팅 하드웨어가 필요하며, 이는 차량의 전력 소모를 증가시키는 요인이 된다.
5.3. 법적 및 윤리적 도전 과제
기술 발전과 더불어 법적, 윤리적 문제 또한 자율주행 상용화의 중요한 걸림돌로 작용하고 있다.
사고 책임 소재: 자율주행차 사고 발생 시 책임 소재를 누구에게 물을 것인가(운전자, 제조사, 소프트웨어 개발사 등)에 대한 명확한 법적 기준이 아직 정립되지 않았다. 이는 기술 개발 및 보험 제도에 큰 영향을 미친다.
규제 및 표준화: 각국 정부는 자율주행차의 안전성 확보를 위한 규제 프레임워크를 마련하고 있으며, 국제적인 표준화 노력도 진행 중이다. 하지만 기술 발전 속도에 맞춰 법규를 정비하는 것이 쉽지 않다.
윤리적 딜레마 (Trolley Problem): 피할 수 없는 사고 상황에서 자율주행차가 누구의 생명을 우선시해야 하는가와 같은 윤리적 딜레마는 사회적 합의가 필요한 부분이다. 예를 들어, 보행자와 탑승자 중 누구를 보호할 것인가와 같은 문제는 시스템 설계에 있어 중요한 고려 사항이다.
데이터 프라이버시: 자율주행차는 운전자의 이동 경로, 습관 등 민감한 개인 정보를 수집할 수 있다. 이러한 데이터의 수집, 저장, 활용에 대한 투명성과 보안성 확보가 중요하다.
6. 자율주행 기술의 미래 전망 및 기대 효과
자율주행 기술은 미래 사회의 모습을 근본적으로 변화시킬 잠재력을 가지고 있으며, 다양한 분야에서 혁신적인 기대 효과를 가져올 것으로 전망된다.
6.1. 미래 사회 변화 예측
교통 시스템의 혁신: 완전 자율주행 시대가 도래하면 교통 체증이 크게 감소하고, 교통 흐름이 최적화될 것이다. 차량 간 통신(V2V)과 인프라 통신(V2I)을 통해 도로 위의 모든 차량이 유기적으로 연결되어 효율적인 운행이 가능해진다. 또한, 주차 공간 활용의 효율성이 증대되고, 개인 차량 소유의 필요성이 줄어들며 공유 모빌리티 서비스가 더욱 활성화될 수 있다.
도시 계획 및 인프라 변화: 자율주행차에 최적화된 스마트 도시 인프라가 구축될 것이다. 이는 도로 설계, 신호 체계, 주차 공간 등 도시 전반의 변화를 유도하며, 대중교통 시스템과의 연계를 통해 도시 이동성을 극대화할 수 있다.
경제 및 고용 시장 영향: 물류 및 운송 산업의 효율성이 극대화되어 비용 절감 효과가 발생할 것이다. 새로운 모빌리티 서비스 시장이 창출되고 관련 산업이 성장할 것으로 예상된다. 반면, 전문 운전자 직업(택시, 트럭, 버스 기사 등)의 감소 가능성도 제기되어, 이에 대한 사회적 대비가 필요하다.
개인의 삶의 질 향상: 운전으로부터 자유로워진 시간은 개인의 생산성 향상이나 여가 활동에 활용될 수 있다. 이동 약자(노약자, 장애인)의 이동권이 크게 확대되며, 교통사고 감소로 인한 사회적 비용 절감 및 생명 보호 효과도 기대된다.
6.2. 완전 자율주행 시대의 도래 시점 및 과제
전문가들은 레벨 5 완전 자율주행의 상용화 시점에 대해 다양한 예측을 내놓고 있다. 일부는 2030년대 중반 이후로 예상하며, 기술적 난제와 사회적 합의가 필요함을 강조한다. 특히, 모든 기상 조건과 모든 도로 환경에서 인간 운전자를 능가하는 안전성을 확보하는 것이 가장 큰 과제이다.
또한, 앞서 언급된 기술적, 법적, 윤리적 과제들을 해결하기 위한 지속적인 연구 개발과 국제적인 협력, 그리고 사회적 논의가 필수적이다. 특히, 자율주행 시스템의 투명성과 신뢰성을 확보하고, 사고 발생 시 책임 소재를 명확히 하며, 윤리적 기준을 수립하는 것이 중요하다.
6.3. 윤리적 논의의 중요성
자율주행 기술은 단순한 공학적 문제를 넘어 사회 전체의 가치관과 윤리적 판단에 영향을 미친다. '트롤리 딜레마'와 같은 극단적인 상황뿐만 아니라, 시스템의 편향성, 데이터 프라이버시, 인간과 기계의 상호작용 방식 등 다양한 윤리적 질문에 대한 답을 찾아야 한다. 기술 개발 단계부터 사회 각계각층의 참여를 통해 윤리적 가이드라인을 수립하고, 기술이 인간의 존엄성과 안전을 최우선으로 하도록 설계하는 노력이 지속되어야 할 것이다.
자율주행 기술은 인류에게 전례 없는 이동의 자유와 편의를 제공할 잠재력을 가지고 있다. 기술의 발전과 함께 사회적 합의와 제도적 정비가 조화를 이룰 때, 우리는 비로소 안전하고 지속 가능한 자율주행 시대를 맞이할 수 있을 것이다.
참고 문헌
SAE International. (2021). J3016_202104: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.
National Highway Traffic Safety Administration (NHTSA). (2022). Automated Vehicles for Safety. Retrieved from https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
Mercedes-Benz. (2023). DRIVE PILOT. Retrieved from https://www.mercedes-benz.com/en/innovation/drive-pilot/
Carnegie Mellon University. (n.d.). ALVINN. Retrieved from https://www.cs.cmu.edu/~tjochem/alvinn/alvinn.html
DARPA. (n.d.). Grand Challenge. Retrieved from https://www.darpa.mil/about-us/timeline/grand-challenge
Waymo. (n.d.). Our history. Retrieved from https://waymo.com/journey/
Cruise. (2023). Cruise Origin. Retrieved from https://www.getcruise.com/origin/
Mobileye. (2023). Mobileye SuperVision™ and Mobileye Chauffeur™. Retrieved from https://www.mobileye.com/our-technology/mobileye-supervision-and-mobileye-chauffeur/
Kim, J. H., & Kim, J. H. (2022). A Review of Sensor Fusion Techniques for Autonomous Driving. Journal of Advanced Transportation, 2022.
Chen, X., et al. (2023). Deep Learning for Autonomous Driving: A Survey. IEEE Transactions on Intelligent Transportation Systems, 24(1), 1-20.
Jo, K., et al. (2022). High-Definition Map Generation and Localization for Autonomous Driving: A Survey. Sensors, 22(1), 321.
Guldner, S., et al. (2021). Drive-by-Wire Systems for Autonomous Vehicles: A Review. SAE Technical Paper, 2021-01-0863.
Tesla. (n.d.). Autopilot and Full Self-Driving Capability. Retrieved from https://www.tesla.com/autopilot
Baidu Apollo. (n.d.). Robotaxi. Retrieved from https://apollo.baidu.com/robotaxi
국토교통부. (2023). 자율주행 셔틀 서비스 확대.
TuSimple. (n.d.). Autonomous Freight Network. Retrieved from https://www.tusimple.com/technology/autonomous-freight-network
우아한형제들. (n.d.). 배달의민족 자율주행 로봇 '딜리'. Retrieved from https://www.woowahan.com/tech/robot-delivery
Siemens Mobility. (n.d.). Automated Train Operation. Retrieved from https://www.siemens.com/global/en/products/mobility/rail-solutions/automation/automated-train-operation.html
Airbus. (n.d.). Urban Air Mobility. Retrieved from https://www.airbus.com/en/innovation/future-mobility/urban-air-mobility
Avikus. (n.d.). Autonomous Navigation. Retrieved from https://www.avikus.ai/technology/autonomous-navigation
Honda. (2021). Honda SENSING Elite. Retrieved from https://global.honda/newsroom/news/2021/4210304eng.html
Deloitte. (2023). The future of mobility: Autonomous vehicles. Retrieved from https://www2.deloitte.com/us/en/pages/manufacturing/articles/future-of-mobility-autonomous-vehicles.html
Badue, C., et al. (2021). Self-Driving Cars: A Survey. Expert Systems with Applications, 165, 113812.
European Union Agency for Cybersecurity (ENISA). (2022). Cybersecurity of Autonomous Vehicles. Retrieved from https://www.enisa.europa.eu/publications/cybersecurity-of-autonomous-vehicles
Fagnant, D. J., & Kockelman, K. (2021). Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations. Transportation Research Part A: Policy and Practice, 144, 1-14.
Bonnefon, J. F., et al. (2016). The social dilemma of autonomous vehicles. Science, 352(6293), 1573-1576.
McKinsey & Company. (2023). Autonomous driving: The path to adoption. Retrieved from https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-driving-the-path-to-adoption
KPMG. (2022). Autonomous Vehicles Readiness Index. Retrieved from https://kpmg.com/xx/en/home/insights/2022/07/autonomous-vehicles-readiness-index.html
Gartner. (2023). Hype Cycle for Automotive and Smart Mobility.
기술은 속도 제한이나 교통 단속, 혼잡 관리 등과 어우러져 도시의 안전을 높일 것으로 기대된다.
완전 자율주행을 위한 법적 기틀을 마련하는 법안은 현재 상원 교통위원회에서 검토 단계에 머물러 있다. 이번 주지사의 제안이 이 법안을 통과시키는 계기가 될 수 있을지 관심이 쏠린다. 자율주행차가 실제로 영업을 하려면 기술 발전뿐만 아니라 이를 뒷받침할 법적 근거가 반드시 필요하기 때문이다.
법안이 통과하면 뉴욕주 곳곳에서 로보택시가 영업하는 모습을 볼 수 있게 된다. 다만 뉴욕시는 이번 대상에서 빠졌기에, 복잡한 대도시 환경에서 자율주행차를 도입하는 숙제는 여전히 남아 있다. 오는 1월 20일 발표할 주지사 예산안에 구체적인 규제 기준과 안전 평가 방식이 담길 예정이다. 앞으로 뉴욕시까지 로보택시
로보택시
로보택시(로봇택시, 자율주행택시, 무인택시)는 승차 호출(ride-hailing) 또는 유사한 모빌리티 서비스 맥락에서 운전자의 직접 조작 없이 주행하는 자율주행 차량 기반의 유상 운송 서비스를 의미한다. 통상적으로는 서비스 사업자가 차량·운영 소프트웨어·원격 관제·정비 체계를 포함한 ‘운영 시스템’ 전체를 구성하고, 이용자는 앱 등으로 차량을 호출해 탑승하는 방식으로 제공된다.
1. 개념과 기술적 전제: SAE 자동화 레벨과 운행 조건(ODD)
로보택시는 ‘자율주행 기능’이 아니라 ‘유상 운송 서비스’로서의 성격이 강하다. 즉, 자율주행 소프트웨어(인지·판단·제어)뿐 아니라 승객 안전, 호출·배차, 원격 지원, 데이터 기록, 사고 대응, 보험·규제 준수 등이 결합되어 하나의 서비스로 성립한다.
자율주행 자동화 단계는 SAE J3016 분류가 널리 사용된다. 로보택시가 지향하는 형태는 대체로 레벨4(Level 4, 고도 자동화) 이상이며, 이는 특정 운행설계영역(ODD: Operational Design Domain) 안에서 시스템이 주행 과업을 수행하고, 예외 상황에서도 ‘최소 위험 상태(minimal risk condition)’로 스스로 전환할 수 있어야 한다는 요구와 연결된다. 현실의 로보택시는 도심 일부 구역, 특정 날씨·시간대, 지정된 지도 및 속도 제한 등 제한된 ODD에서 먼저 상용화되는 경우가 많다.
2. 로보택시의 장점: 안전·접근성·운영 효율의 잠재력
교통 안전 개선 가능성이 가장 자주 언급된다. 로보택시는 신호 준수, 제한속도 준수, 보행자·자전거 감지 등 규칙 기반의 안전 동작을 일관되게 수행하도록 설계될 수 있으며, 위험 상황에서 보수적으로 대응하는 정책을 적용하기 쉽다.
이동 접근성 확대도 핵심 장점으로 꼽힌다. 고령자, 장애인, 야간 이동 수요, 대중교통이 취약한 지역에서 호출형 이동 서비스의 공급을 늘릴 수 있다는 기대가 있다. 또한 원격 지원과 관제 체계를 결합하면, 운전 인력 부족 상황에서 ‘차량 가동률’을 높이는 방향으로 운영을 최적화할 여지가 있다.
운영 효율 및 서비스 품질의 표준화 역시 장점으로 논의된다. 일정 수준 이상의 자율주행이 안정화되면, 운전자 인건비 비중이 큰 도심 단거리 운송에서 비용 구조가 달라질 수 있고, 차량 상태·주행 데이터 기반의 정비와 보험 모델이 정교해질 수 있다.
3. 로보택시의 단점과 한계: 안전 검증, 비용, 혼잡, 규제·수용성
안전성 검증의 난이도가 가장 큰 제약이다. 도심은 예외 상황이 빈번하며, 공사 구간·돌발 보행·비정형 교통 흐름 등은 데이터와 정책 설계의 복잡도를 급격히 높인다. 따라서 로보택시는 대개 보수적 주행(완만한 가감속, 넉넉한 차간거리, 신중한 진입)으로 안정성을 확보하려 하며, 이는 체감 속도 저하와 연결될 수 있다.
비용 구조의 부담도 크다. 라이다·레이다·고성능 컴퓨팅 등 하드웨어 비용과, 지도·시뮬레이션·검증, 관제 인력, 정비·청소, 보험 등 운영 비용이 결합되어 단기적으로는 일반 차량 호출보다 비싸거나 제한된 지역에서만 성립하기 쉽다.
도심 혼잡과 ‘공차 주행(deadheading)’ 문제가 단점으로 지적된다. 승객을 태우지 않은 상태로 배차 위치를 조정하거나 회송하는 과정에서 통행량이 늘 수 있으며, 대중교통과의 관계(대체재인지 보완재인지)에 따라 도시 교통정책과 충돌할 여지도 있다.
규제와 사회적 수용성도 상용화 속도를 좌우한다. 국가·도시별로 무인 주행의 허용 범위, 사고 책임, 데이터 기록 및 공개, 원격 운행·관제 요건이 달라 서비스 확장이 단일한 기술 문제로만 결정되지 않는다.
4. 주요 개발·운영 업체와 지역별 전개
미국에서는 웨이모(Waymo)가 다수 도시에서 로보택시 서비스를 확대하는 흐름을 공개적으로 설명해 왔다. 2025년 11월에는 마이애미, 댈러스, 휴스턴, 샌안토니오, 올랜도 등 추가 도시에서의 전개 계획을 발표한 바 있다. CES 2026에서는 웨이모가 새로운 로보택시 차량(‘Ojai’)을 공개했다는 보도도 나왔다.
중국에서는 바이두의 아폴로 고(Apollo Go)가 ‘완전 무인(100% driverless) 운영 확대’를 강조하며 다수 도시로 확장하고 있다는 발표를 이어왔다. 중동 등 해외 시장으로의 진출도 협력 형태로 논의되고 있다.
기타 지역에서는 도시 교통 당국과의 협력 모델이 늘고 있다. 예를 들어 두바이 RTA는 크루즈(Cruise)와의 협력을 포함한 자율주행 로보택시 운영 계획을 단계적으로 공개하며 운행 구역을 제시했다는 보도가 있었다. 유럽에서는 로보택시 도입 필요성 및 도시 구조와의 적합성을 두고 찬반 논의가 지속된다.
또한 아마존 산하의 주욱스(Zoox), 우버(Uber)의 신규 로보택시 계획 및 파트너십 등 다양한 플레이어가 시장 진입을 준비하는 정황이 최근 보도로 확인된다. 이는 로보택시가 ‘특정 기업의 단독 실험’에서 ‘복수 사업자의 경쟁 구도’로 이동하고 있음을 시사한다.
5. CES 2026 사례: 현대차그룹 모셔널 로보택시 체험에서 드러난 특성
2026년 1월 라스베이거스에서 공개된 현대차그룹 계열 모셔널(Motional)의 아이오닉 5 기반 로보택시 시승 보도는 로보택시의 현실적 특성을 구체적으로 보여준다. 보도에 따르면 2026년 1월 8일(현지시간) 도심 등 약 14km를 약 35분간 주행하는 시범 운행에서, 차량은 평균 시속 약 40km 수준의 정속 주행을 보였고 급가속·급제동이 두드러지지 않았으며, 신호·정지선·스톱(Stop) 표지 등 교통 규칙을 매우 엄격하게 준수하는 방식으로 운행됐다.
특히 보행자 돌발 진입 가능성을 예측해 차간거리를 선제적으로 넓게 확보하는 등 ‘안전 우선의 보수적 정책’이 강조되었고, 그 결과 주변 차량 대비 체감 속도가 느리게 느껴질 수 있다는 평가가 함께 제시됐다. 이는 로보택시가 상용화를 위해 선택하는 전형적 트레이드오프(안전 여유 확보 vs. 이동 시간·쾌적성)로 해석할 수 있다.
같은 맥락에서, 모셔널이 엔드투엔드(E2E) 방식의 적용과 서비스 재론칭 계획을 언급한 보도도 있다. 로보택시 산업 전반에서 ‘주행의 자연스러움’과 ‘검증 가능성’을 동시에 만족시키기 위해, 데이터 중심 학습과 안전 아키텍처를 결합하는 접근이 강화되는 추세와 연결된다.
출처
중앙일보(원문 표기된 기사): https://www.joongang.co.kr/article/25396800
다음 뉴스(중앙일보 기사 유통본, 2026-01-12): https://v.daum.net/v/20260112083204350
아시아경제(현대차그룹 모셔널 로보택시 CES 2026 관련, 2026-01-12): https://www.asiae.co.kr/article/2026011207374042523
SAE(자동화 레벨 개요 및 J3016 관련 설명): https://www.sae.org/news/blog/sae-levels-driving-automation-clarity-refinements
UNECE 위키(참고용 PDF, SAE J3016 문서): https://wiki.unece.org/download/attachments/128418539/SAE%20J3016_202104.pdf
Waymo 공식 블로그(2025-11-18, 신규 도시 전개 관련): https://waymo.com/blog/2025/11/safe-routine-ready-autonomous-driving-in-new-cities
SF Chronicle(웨이모 CES 2026 로보택시 ‘Ojai’ 보도, 2026-01): https://www.sfchronicle.com/tech/article/waymo-ojai-robotaxi-zeekr-21282279.php
Car and Driver(웨이모 ‘Ojai’ 세부 보도, 2026-01): https://www.caranddriver.com/news/a69938250/waymo-ojai-autonomous-robotaxi-details/
Apollo Go(완전 무인 운영 및 확장 관련 공지): https://www.apollogo.com/news/366
Reuters(글로벌 로보택시 전개 동향, 2025-12): https://www.reuters.com/business/media-telecom/driverless-future-gains-momentum-with-global-robotaxi-deployments-2025-12-22/
Gulf News(두바이 RTA 로보택시 단계적 롤아웃 관련, 2026-01): https://gulfnews.com/uae/transport/dubai-rta-reveals-phase-1-rollout-of-driverless-robotaxis-across-65-locations-1.500403033
Fortune(Zoox 유료 서비스 계획 관련, 2025-12): https://fortune.com/2025/12/08/amazon-robotaxi-service-zoox-plans-fees-vegas-san-francisco/
운행이 넓어질 수 있을지 많은 이들이 주목하고 있다.
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.


