SRAM(Static Random-Access Memory)은 현대 컴퓨팅 시스템에서 고속 데이터 처리를 가능하게 하는 필수적인 반도체 메모리 기술이다. 전원이 공급되는 동안 데이터를 안정적으로 유지하는 특성 덕분에 주로 CPU의 캐시 메모리, 임베디드 시스템, 네트워킹 장비 등 빠른 접근 속도가 요구되는 다양한 분야에 광범위하게 활용된다. 이 글에서는 SRAM의 기본적인 개념부터 작동 원리, 다양한 종류, 주요 활용 사례, 그리고 현재 직면한 과제와 미래 전망에 이르기까지 심층적으로 탐구한다.
목차
- SRAM 개요: 개념 및 특징
- SRAM의 역사와 발전
- SRAM의 작동 원리 및 핵심 기술
- SRAM의 종류 및 특성
- SRAM의 주요 활용 사례 및 응용 분야
- SRAM의 현재 동향 및 과제
- SRAM의 미래 전망
SRAM 개요: 개념 및 특징
SRAM은 컴퓨터 시스템의 성능을 좌우하는 핵심 요소 중 하나로, 그 특유의 작동 방식과 장단점으로 인해 특정 응용 분야에서 독보적인 위치를 차지하고 있다.
SRAM의 개념 정의
SRAM은 ‘Static Random-Access Memory’의 약자로, 이름에서 알 수 있듯이 ‘정적(Static)’이라는 특징을 가진다. 이는 전원이 공급되는 한 데이터를 별도의 조치 없이 ‘정적으로’ 유지한다는 의미이다. SRAM은 데이터를 저장하기 위해 플립플롭(flip-flop) 회로를 사용하며, 일반적으로 6개의 트랜지스터로 구성된 셀에 1비트의 정보를 저장한다. 이 플립플롭 회로는 두 개의 안정적인 상태(0 또는 1) 중 하나를 지속적으로 유지할 수 있어, 한 번 저장된 데이터는 전원이 끊기지 않는 한 그대로 보존된다. 이러한 특성 덕분에 SRAM은 주기적인 데이터 리프레시(refresh)가 필요한 DRAM(Dynamic Random-Access Memory)과 차별화된다.
DRAM과의 주요 차이점
SRAM과 DRAM은 모두 휘발성 메모리이지만, 데이터를 저장하고 유지하는 방식에서 근본적인 차이를 보인다. SRAM은 플립플롭 회로를 사용하여 데이터를 정적으로 유지하므로, DRAM처럼 주기적으로 전하를 재충전하는 ‘리프레시’ 과정이 필요 없다. 이로 인해 SRAM은 DRAM보다 훨씬 빠른 데이터 접근 속도를 제공한다. 하지만 SRAM 셀은 6개 이상의 트랜지스터로 구성되는 반면, DRAM 셀은 하나의 트랜지스터와 하나의 커패시터로 구성되어 훨씬 단순하다. 이러한 구조적 차이로 인해 SRAM은 DRAM보다 집적도가 낮아 동일한 면적에 더 적은 용량을 저장할 수 있으며, 제조 비용 또한 높다. 따라서 SRAM은 속도가 중요한 캐시 메모리에 주로 사용되고, DRAM은 대용량 메모리가 필요한 메인 메모리에 주로 사용된다.
SRAM의 장점 및 단점
SRAM의 가장 큰 장점은 압도적으로 빠른 접근 속도이다. 리프레시가 필요 없기 때문에 데이터 요청 시 거의 즉각적으로 응답할 수 있다. 또한, 대기 상태(idle state)에서의 전력 소모가 DRAM보다 낮으며, 데이터 유지의 안정성과 신뢰성이 매우 높다. 플립플롭 회로가 데이터를 안정적으로 유지하므로, 외부 노이즈나 온도 변화에 강한 특성을 보인다. 그러나 SRAM은 높은 제조 비용과 낮은 집적도라는 명확한 단점을 가진다. 각 셀이 더 많은 트랜지스터를 필요로 하므로, 대용량 메모리를 구현하기 어렵고 비용이 많이 든다. 또한, 활성 상태(active state)에서는 DRAM보다 더 많은 전력을 소모할 수 있다는 점도 단점으로 꼽힌다.
SRAM의 역사와 발전
SRAM 기술은 반도체 산업의 발전과 궤를 같이하며 지속적으로 진화해왔다.
초기 개발 및 기술적 진보
SRAM의 역사는 1960년대 초반으로 거슬러 올라간다. 반도체 바이폴라 SRAM은 1963년 Fairchild Semiconductor의 로버트 노먼(Robert Norman)에 의해 발명되었다. 이는 트랜지스터를 이용한 메모리 기술의 중요한 초석을 다졌다. 이듬해인 1964년에는 존 슈미트(John Schmidt)가 MOS(Metal-Oxide-Semiconductor) 기술을 기반으로 하는 MOS-SRAM을 개발하며, 이후 주류가 될 CMOS(Complementary MOS) 기술의 길을 열었다. 초기 SRAM은 주로 컴퓨터의 레지스터나 소규모 캐시 메모리에 사용되었으며, 이후 반도체 제조 공정의 미세화와 트랜지스터 기술의 발전과 함께 SRAM은 지속적으로 성능과 효율성을 개선해왔다. 특히 CMOS 기술의 도입은 SRAM의 전력 효율성을 크게 향상시키는 계기가 되었다.
SRAM의 작동 원리 및 핵심 기술
SRAM이 고속으로 데이터를 처리할 수 있는 비결은 그 독특한 데이터 저장 원리와 정교한 읽기/쓰기 동작 과정에 있다.
데이터 저장 원리 (플립플롭 회로)
SRAM의 핵심은 플립플롭(latching circuitry) 회로이다. 플립플롭은 두 개의 안정적인 상태(bi-stable states)를 가지는 디지털 회로로, 이 두 상태를 각각 논리 ‘0’과 ‘1’로 표현하여 1비트의 정보를 저장한다. 마치 한 번 켜거나 끄면 그 상태를 유지하는 전등 스위치와 유사하다. SRAM 셀 내의 플립플롭은 두 개의 교차 결합된 인버터(inverter)로 구성되며, 이 인버터들은 서로의 출력을 입력으로 받아 피드백 루프를 형성한다. 이 구조 덕분에 전원이 공급되는 한, 플립플롭은 현재 상태를 안정적으로 유지하며 외부에서 새로운 신호가 주어지지 않는 한 상태를 변경하지 않는다. 이러한 특성이 SRAM이 ‘정적’ 메모리라고 불리는 이유이다.
읽기 및 쓰기 동작 과정
SRAM에서 데이터 읽기 및 쓰기 작업은 정교한 제어 신호와 주소 버스를 통해 이루어진다.
- 주소 지정: CPU나 컨트롤러는 주소 버스를 통해 특정 메모리 셀의 주소를 지정한다.
- 셀 활성화: 지정된 주소에 해당하는 워드 라인(word line)이 활성화되어, 해당 셀의 접근 트랜지스터가 켜진다.
- 데이터 읽기: 읽기 동작 시, 활성화된 셀의 플립플롭에 저장된 값이 비트 라인(bit line)으로 전달된다. 비트 라인은 센스 앰프(sense amplifier)에 연결되어 미세한 전압 차이를 감지하고, 이를 증폭하여 데이터 버스를 통해 CPU로 전송한다.
- 데이터 쓰기: 쓰기 동작 시, 데이터 버스를 통해 입력된 새로운 값(0 또는 1)이 비트 라인을 통해 해당 셀의 플립플롭으로 전달된다. 이 새로운 값은 플립플롭의 상태를 강제로 변경하여 데이터를 업데이트한다. 이때, 워드 라인이 활성화되어 접근 트랜지스터가 켜져야만 플립플롭에 새로운 값이 기록될 수 있다.
이러한 과정은 매우 빠른 속도로 이루어지며, 특히 읽기 동작에서는 리프레시 지연이 없어 즉각적인 데이터 접근이 가능하다.
트랜지스터 구성 (6T SRAM 등)
가장 일반적인 SRAM 셀은 6개의 MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)으로 구성된 6T SRAM 셀이다. 이 6T 셀은 두 개의 교차 결합된 인버터(각 인버터는 NMOS와 PMOS 트랜지스터로 구성)와 두 개의 접근 트랜지스터(access transistor)로 이루어져 있다. 두 개의 인버터는 데이터를 저장하는 플립플롭 역할을 하며, 두 개의 접근 트랜지스터는 워드 라인(word line)의 제어에 따라 플립플롭과 비트 라인(bit line) 사이의 연결을 담당한다.
6T SRAM 셀은 높은 안정성과 빠른 속도를 제공하지만, 트랜지스터 수가 많아 집적도가 낮고 비용이 높다는 단점이 있다. 이러한 단점을 보완하기 위해 4T SRAM과 같은 다른 구성도 연구되거나 특정 응용 분야에서 사용되기도 한다. 4T SRAM은 두 개의 인버터와 두 개의 접근 트랜지스터로 구성되지만, 데이터 유지를 위해 저항을 사용하거나 트랜지스터를 줄이는 방식으로 집적도를 높이려 한다. 그러나 4T SRAM은 6T SRAM에 비해 안정성이 떨어지거나 누설 전류 문제가 발생할 수 있어, 주로 저전력 또는 고밀도에 특화된 특정 애플리케이션에 제한적으로 적용된다.
SRAM의 종류 및 특성
SRAM은 기본적인 작동 원리를 공유하면서도, 특정 요구 사항을 충족하기 위해 다양한 형태로 발전해왔다.
비휘발성 SRAM (NV-SRAM)
일반적인 SRAM은 휘발성 메모리이므로 전원이 끊기면 데이터가 손실된다. 이러한 한계를 극복하기 위해 개발된 것이 비휘발성 SRAM(Non-volatile SRAM, nvSRAM)이다. nvSRAM은 표준 SRAM 기능에 더해 전원이 끊겨도 데이터를 유지하는 백업 시스템을 통합한 형태이다. 이는 주로 소형 배터리나 내장된 플래시 메모리(EEPROM 또는 NAND 플래시)를 사용하여 구현된다. 전원 공급이 중단될 위험이 감지되면, nvSRAM 컨트롤러는 SRAM 셀의 데이터를 자동으로 백업 메모리로 전송하고, 전원이 복구되면 다시 SRAM으로 데이터를 불러와 마치 데이터가 손실되지 않은 것처럼 작동한다. 이러한 특성 덕분에 nvSRAM은 전력 손실 시에도 중요한 데이터를 보호해야 하는 산업용 제어 시스템, POS(Point-of-Sale) 터미널, 네트워크 장비의 설정 정보 저장 등에 활용된다.
의사 정적 RAM (PSRAM)
의사 정적 RAM(Pseudostatic RAM, PSRAM)은 SRAM과 DRAM의 장점을 결합하려는 시도에서 탄생한 메모리 유형이다. PSRAM은 내부적으로는 DRAM 코어를 사용하지만, 외부 인터페이스는 SRAM처럼 주기적인 리프레시 신호를 요구하지 않도록 설계되었다. 즉, DRAM의 높은 집적도와 낮은 비용이라는 장점을 유지하면서도, SRAM과 유사한 사용 편의성을 제공한다. PSRAM 내부에는 DRAM 코어의 리프레시를 자동으로 처리하는 컨트롤러 회로가 내장되어 있어, 외부 시스템에서는 마치 SRAM처럼 작동하는 것처럼 보인다. 이러한 특성 덕분에 PSRAM은 휴대폰, 디지털카메라, 휴대용 게임기 등 제한된 공간과 전력 예산 내에서 비교적 대용량의 메모리가 필요한 모바일 및 임베디드 애플리케이션에 적합하다.
동기/비동기 SRAM 및 기타 유형
SRAM은 시스템 클럭과의 동기화 여부에 따라 크게 두 가지로 분류할 수 있다.
- 비동기식 SRAM (Asynchronous SRAM): 시스템 클럭과 독립적으로 작동한다. 주소 신호가 입력되면 정해진 접근 시간(access time) 이후에 데이터가 출력된다. 초기 SRAM 제품들이 대부분 비동기식이었으며, 간단한 제어 로직과 빠른 응답 속도를 제공한다. 주로 소규모 캐시, 버퍼, 임베디드 시스템에 사용된다.
- 동기식 SRAM (Synchronous SRAM, SSRAM): 시스템 클럭과 동기화되어 작동한다. 모든 데이터 입력 및 출력, 제어 신호가 클럭 엣지에 맞춰 처리된다. 이는 시스템 전체의 타이밍을 단순화하고, 더 높은 대역폭과 예측 가능한 성능을 제공한다. 동기식 SRAM은 다시 여러 유형으로 나뉜다.
- 파이프라인 버스트 SRAM (Pipeline Burst SRAM): 클럭 사이클마다 데이터를 전송하며, 파이프라인 방식을 통해 연속적인 데이터 전송 속도를 향상시킨다.
- 동시 읽기/쓰기 SRAM (Dual-Port SRAM): 두 개의 독립적인 포트를 통해 동시에 데이터를 읽고 쓸 수 있어, 두 개의 프로세서나 장치가 동시에 메모리에 접근해야 하는 애플리케이션에 유용하다.
- QDR(Quad Data Rate) SRAM: 클럭의 상승 에지(rising edge)와 하강 에지(falling edge)에서 각각 두 번씩, 총 네 번의 데이터 전송을 가능하게 하여 매우 높은 대역폭을 제공한다. 주로 고성능 라우터, 스위치 등 네트워킹 장비에 사용된다.
이 외에도 특정 목적에 맞는 다양한 SRAM 유형이 존재한다. 예를 들어, 저전력 소모에 최적화된 저전력 SRAM(Low-Power SRAM), 특정 데이터 패턴을 저장하는 바이너리 SRAM(Binary SRAM), 심지어 삼진 논리(ternary logic)를 구현하는 삼진 SRAM(Ternary SRAM) 등도 연구되거나 특수 분야에 적용될 수 있다.
SRAM의 주요 활용 사례 및 응용 분야
SRAM의 고유한 특성들은 다양한 컴퓨팅 및 전자 기기에서 핵심적인 역할을 수행하도록 한다.
컴퓨터 캐시 메모리
SRAM의 가장 대표적인 활용 분야는 컴퓨터의 캐시 메모리(Cache Memory)이다. CPU는 메인 메모리(DRAM)보다 훨씬 빠르게 작동하기 때문에, 메인 메모리에서 데이터를 가져오는 데 시간이 많이 소요되면 전체 시스템 성능이 저하된다. 이를 메모리 병목 현상(memory bottleneck)이라고 한다. SRAM은 이러한 병목 현상을 완화하기 위해 CPU 내부에 L1, L2, L3 캐시 메모리로 광범위하게 사용된다. L1 캐시는 CPU 코어에 가장 가깝게 위치하며 가장 빠르고 용량이 작다. L2 캐시는 L1보다 느리지만 용량이 크며, L3 캐시는 여러 CPU 코어가 공유하는 가장 크고 느린 캐시이다. 이들 캐시는 프로세서가 자주 접근하는 데이터를 임시로 저장하여, CPU가 데이터를 더 빠르게 처리하고 시스템 성능을 향상시키는 데 결정적인 역할을 한다.
임베디드 시스템 및 네트워킹 장비
SRAM은 특정 기능을 수행하도록 설계된 임베디드 시스템에서도 중요한 역할을 한다. 마이크로컨트롤러(MCU), 디지털 신호 처리기(DSP), FPGA(Field-Programmable Gate Array) 등은 실시간 데이터 처리와 빠른 응답이 필수적인데, SRAM은 이러한 요구사항을 충족시킨다. 예를 들어, DSP에서는 고속의 데이터 버퍼로, FPGA에서는 구성 정보 저장이나 내부 로직의 빠른 데이터 접근을 위해 사용된다.
또한, 라우터, 스위치, 방화벽과 같은 네트워킹 장비에서도 SRAM은 핵심적인 구성 요소이다. 이들 장비는 수많은 패킷을 실시간으로 처리하고, 라우팅 테이블, MAC 주소 테이블, 패킷 버퍼 등을 고속으로 업데이트해야 한다. SRAM은 이러한 테이블 정보를 저장하고 빠르게 검색하며, 들어오고 나가는 데이터 패킷을 임시로 저장하는 버퍼 메모리 역할을 수행하여 고속 데이터 처리와 효율적인 통신을 지원한다. 특히 QDR SRAM과 같은 고대역폭 SRAM은 이러한 네트워킹 장비의 성능을 극대화하는 데 기여한다.
모바일, 웨어러블 및 IoT 기기
저전력 소모 특성 덕분에 SRAM은 배터리로 구동되는 모바일 기기, 웨어러블 기기, 그리고 IoT(사물 인터넷) 장치에서 중요한 역할을 한다. 스마트폰의 프로세서 내 캐시 메모리, 스마트워치나 피트니스 트래커의 임시 데이터 저장 공간, IoT 센서 노드의 소규모 데이터 버퍼 등으로 활용된다. 이들 기기는 제한된 전력 예산 내에서 빠른 데이터 접근과 전력 효율성을 동시에 요구하는데, SRAM은 대기 전력 소모가 낮고 빠른 응답 속도를 제공하여 이러한 요구사항을 충족시킨다. 특히 저전력 SRAM(LP-SRAM)은 모바일 애플리케이션 프로세서(AP)나 마이크로컨트롤러에 내장되어 전반적인 시스템의 전력 효율을 높이는 데 기여한다.
고성능 컴퓨팅 및 특수 응용 분야
SRAM은 슈퍼컴퓨터와 같은 고성능 컴퓨팅(HPC) 시스템에서도 중요한 역할을 한다. 대규모 병렬 처리와 복잡한 계산을 수행하는 HPC 시스템에서는 데이터 접근 속도가 전체 성능에 미치는 영향이 매우 크다. SRAM은 이러한 시스템의 프로세서 캐시뿐만 아니라, 특정 가속기나 코프로세서의 온칩(on-chip) 메모리로 사용되어 계산 효율을 극대화한다.
이 외에도 의료 장비(예: MRI, CT 스캐너의 이미지 처리), 자동차 시스템(예: ADAS(첨단 운전자 보조 시스템)의 실시간 데이터 처리), 디지털 카메라(예: 이미지 버퍼), LCD 스크린(예: 프레임 버퍼) 등 속도와 신뢰성이 중요한 다양한 산업 및 소비자 전자제품에 필수적으로 사용된다. 예를 들어, 고해상도 디지털 카메라는 빠른 연속 촬영을 위해 대용량 SRAM을 이미지 버퍼로 사용하여 촬영된 사진 데이터를 일시적으로 저장하고 처리한다.
SRAM의 현재 동향 및 과제
SRAM 기술은 끊임없이 발전하고 있지만, 동시에 여러 가지 도전 과제에 직면해 있다.
미세 공정의 한계와 전력/성능 문제
반도체 산업이 나노 스케일 시대로 접어들면서, SRAM은 미세 공정의 어려움에 직면하고 있다. 트랜지스터의 크기가 줄어들수록 누설 전류(leakage current)가 증가하여 대기 전력 소모가 늘어나고, 셀의 안정성이 저하될 수 있다. 또한, 미세 공정에서 발생하는 공정 변화(process variation)는 SRAM 셀 간의 특성 불균일성을 심화시켜 수율 저하와 성능 저하를 야기한다. 특히 최근 AI 워크로드의 폭발적인 증가로 온칩 메모리 대역폭 수요가 급증하면서, SRAM은 더 높은 성능과 동시에 더 낮은 전력 소모를 달성해야 하는 이중적인 압력에 직면하고 있다. AI 칩의 경우, 방대한 데이터를 빠르게 처리해야 하므로 온칩 SRAM의 용량과 속도가 매우 중요하지만, 동시에 칩 전체의 전력 효율도 매우 중요한 요소이다.
다른 메모리 기술과의 경쟁
SRAM은 DRAM, 플래시 메모리와 같은 기존 메모리 기술뿐만 아니라, MRAM(Magnetoresistive RAM), ReRAM(Resistive RAM), PRAM(Phase-change RAM) 등 새로운 비휘발성 메모리 기술의 발전과도 경쟁하고 있다. 이러한 신기술들은 비휘발성 특성, 높은 집적도, 낮은 전력 소모 등의 장점을 내세우며 SRAM이 지배해온 특정 시장 영역을 잠식하려 한다. 예를 들어, MRAM은 SRAM과 유사한 속도를 제공하면서도 비휘발성이라는 장점을 가지고 있어, 일부 임베디드 시스템이나 캐시 메모리 시장에서 SRAM의 대안으로 부상하고 있다.
신뢰성 및 비용 문제
나노 스케일 트랜지스터의 고장 메커니즘은 SRAM 셀의 안정성, 읽기 오류(read error), 접근 시간 지연(access time delay) 등 신뢰성 문제를 야기한다. 미세화될수록 셀의 노이즈 마진(noise margin)이 줄어들고, 방사선이나 전압 변동에 더 취약해질 수 있다. 이러한 신뢰성 문제는 특히 우주 항공, 의료, 자동차와 같이 높은 신뢰성이 요구되는 분야에서 SRAM 적용에 대한 제약으로 작용할 수 있다. 또한, SRAM은 셀당 트랜지스터 수가 많아 제조 공정이 복잡하고, 이는 높은 제조 비용으로 이어진다. 대용량 SRAM을 구현하는 데 드는 비용은 지속적인 과제로 남아 있으며, 이는 SRAM의 적용 범위를 제한하는 요인이 된다.
SRAM의 미래 전망
SRAM은 현재의 도전 과제에도 불구하고, 미래 기술 혁신의 핵심 동력으로서 그 중요성을 더욱 확대해 나갈 것으로 예상된다.
AI, IoT, 5G 등 차세대 기술과의 융합
인공지능(AI), 머신러닝, IoT(사물 인터넷), 5G 통신, 엣지 컴퓨팅(Edge Computing) 등 고속, 저전력 메모리 솔루션이 필수적인 차세대 기술 분야에서 SRAM의 역할은 더욱 중요해질 것으로 예상된다. AI 프로세서는 방대한 데이터를 빠르게 처리하기 위해 대규모 온칩 캐시 메모리를 필요로 하며, 엣지 AI 장치는 제한된 전력 내에서 고성능을 발휘해야 한다. 5G 통신 인프라는 초고속 데이터 처리를 위한 버퍼 메모리를 요구한다. SRAM은 이러한 요구사항을 충족시키는 데 최적화된 솔루션이므로, 앞으로도 이들 분야에서 핵심적인 위치를 유지할 것이다. 특히, AI 가속기 내에서 SRAM은 데이터 이동을 최소화하여 에너지 효율을 높이고 처리량을 극대화하는 데 필수적인 요소로 자리매김할 것이다.
기술 혁신 및 새로운 아키텍처
SRAM 기술은 현재의 한계를 극복하고 미래 요구사항을 충족하기 위해 지속적인 기술 혁신을 추구하고 있다. 고밀도화를 위한 고급 패키징 기술, 예를 들어 3D 스태킹(3D stacking) 기술은 여러 층의 SRAM 칩을 수직으로 쌓아 집적도를 높이는 방식이다. 또한, 미세 공정의 신뢰성 문제를 해결하기 위해 자가 치유(self-healing) 및 오류 정정 코드(ECC, Error Correction Code) 메커니즘 개발이 활발히 이루어지고 있다. 이는 SRAM 셀의 결함을 감지하고 자동으로 수정하여 시스템의 안정성을 높이는 기술이다.
더 나아가, SRAM은 다른 메모리 기술과의 하이브리드 솔루션 통합을 통해 새로운 아키텍처를 모색하고 있다. 예를 들어, SRAM의 빠른 속도와 비휘발성 메모리의 데이터 보존 능력을 결합한 하이브리드 메모리 시스템은 전력 효율성과 데이터 안정성을 동시에 확보할 수 있다. 또한, 인메모리 컴퓨팅(in-memory computing)과 같이 데이터 처리와 저장을 통합하는 새로운 컴퓨팅 패러다임에서도 SRAM은 핵심적인 구성 요소로 연구되고 있다.
시장 성장 및 지속적인 수요
SRAM 시장은 앞으로도 꾸준한 성장을 이어갈 것으로 전망된다. 한 보고서에 따르면, 글로벌 SRAM 시장은 2023년 65억 달러 규모에서 2031년에는 95억 달러 규모로 성장할 것으로 예측된다. 이러한 성장은 주로 AI, IoT, 5G, 자동차 전자제품 등 고성능 및 저전력 메모리 수요가 증가하는 산업 분야에 의해 주도될 것이다. 특히 아시아-태평양 지역은 주요 반도체 제조업체와 소비자 전자제품 및 자동차 산업의 높은 채택률로 인해 SRAM 시장 성장을 주도하는 핵심 지역이 될 것으로 예상된다.
참고 문헌
- GeeksforGeeks. (2023, November 28). SRAM (Static Random Access Memory).
- Techopedia. (n.d.). What is Static Random Access Memory (SRAM)?.
- Computer Hope. (2024, January 10). SRAM (Static Random-Access Memory).
- Wikipedia. (n.d.). Static random-access memory.
- Electronics Tutorials. (n.d.). SRAM Memory Cell.
- ResearchGate. (2022, October). A Review on SRAM Cell Designs for Low Power and High Performance Applications.
- Mouser Electronics. (n.d.). Cypress nvSRAM (Nonvolatile SRAM).
- Wikipedia. (n.d.). Pseudostatic RAM.
- GeeksforGeeks. (2023, November 28). SRAM (Static Random Access Memory).
- IBM. (n.d.). Cache memory concepts.
- Micron Technology. (n.d.). SRAM Products.
- STMicroelectronics. (n.d.). SRAMs.
- Analog Devices. (n.d.). SRAM DACs.
- IEEE Xplore. (2023, October 16). SRAM-Based In-Memory Computing for AI Acceleration: A Review.
- TechTarget. (n.d.). What is MRAM (magnetoresistive RAM)?.
- ResearchGate. (2022, October). A Review on SRAM Cell Designs for Low Power and High Performance Applications.
- Synopsys. (n.d.). SRAM Memory Compiler.
- Semiconductor Engineering. (2023, November 28). SRAM Scaling Challenges And Solutions.
- Verified Market Research. (2024, January). Static Random-Access Memory (SRAM) Market Size And Forecast.
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
기사 제보
제보하실 내용이 있으시면 techmore.main@gmail.com으로 연락주세요.


