“`html
ISS(국제우주정거장) 백과사전
국제우주정거장(International Space Station, ISS)은 지구 궤도에 건설된 인류 최대의 국제 과학 연구 시설이다. 1998년 첫 모듈 발사 이후 15개국이 참여하여 건설되었으며, 미세중력 환경에서의 과학 실험, 지구 관측, 그리고 미래 심우주 탐사를 위한 기술 개발의 전초기지 역할을 수행하고 있다. 이 문서는 ISS의 개념부터 역사, 구조, 연구 분야, 현재 운영 현황 및 미래 전망까지 상세히 다룬다.
목차
- 1. ISS(국제우주정거장)의 개념 및 목적
- 2. ISS의 역사와 건설 과정
- 3. ISS의 구조와 핵심 기술
- 4. ISS의 과학 연구 및 활용 분야
- 5. ISS의 현재 운영 현황 및 동향
- 6. ISS의 미래 전망과 도전 과제
- 참고 문헌
1. ISS(국제우주정거장)의 개념 및 목적
국제우주정거장(International Space Station, ISS)은 지구 저궤도에 위치한 거대한 유인 우주 구조물로, 전 세계 여러 국가의 협력을 통해 건설되고 운영되는 다목적 연구 시설이다. 이는 인류가 우주에서 장기간 거주하며 연구 활동을 수행할 수 있도록 설계된 독특한 플랫폼이다.
1.1. 정의
ISS는 공식적으로 ‘국제우주정거장’으로 불리며, 지구 상공 약 400km 궤도를 시속 약 28,000km로 비행하며 90분마다 지구를 한 바퀴 돈다. 이는 축구장 크기에 달하는 거대한 구조물로, 여러 국가가 공동으로 개발하고 조립한 모듈들이 연결되어 있다. 단순히 우주선이 아닌, 지속적인 인간 거주와 과학 실험이 가능한 ‘우주 실험실’이자 ‘우주 기지’의 역할을 수행한다.
1.2. 주요 목적
ISS의 건설 및 운영은 다양한 목적을 가지고 있다. 첫째, 과학 연구이다. 지구에서는 불가능한 미세중력(Microgravity) 환경을 활용하여 물리학, 생물학, 의학, 재료 과학 등 광범위한 분야에서 첨단 연구를 수행한다. 둘째, 우주 탐사 지원이다. 미래의 달, 화성 등 심우주 탐사를 위한 기술과 시스템을 시험하고, 장기간 우주 체류가 인체에 미치는 영향을 연구하여 우주인의 건강과 안전을 확보하는 데 기여한다. 셋째, 교육 및 국제 협력 증진이다. ISS 프로젝트는 냉전 시대 이후 우주 개발 분야에서 국제적인 평화 협력의 상징이 되었으며, 전 세계 학생과 대중에게 우주 과학에 대한 영감을 제공하는 교육 플랫폼으로도 활용된다. 이를 통해 우주 기술의 발전과 인류의 우주 진출에 필요한 지식과 경험을 축적하는 것이 궁극적인 목표이다.
2. ISS의 역사와 건설 과정
ISS는 단일 국가의 역량으로는 불가능했던 거대 프로젝트로, 수십 년에 걸친 국제적인 노력과 기술 발전의 산물이다. 그 역사는 냉전 시대의 경쟁을 넘어선 협력의 상징으로 평가받는다.
2.1. 탄생 배경 및 국제 협력
ISS 프로젝트의 뿌리는 1980년대 미국의 ‘프리덤(Freedom) 우주정거장’ 계획과 러시아의 ‘미르(Mir) 우주정거장’ 경험에 있다. 냉전 종식 이후, 미국과 러시아는 우주 개발 경쟁에서 협력 관계로 전환하며, 유럽우주국(ESA), 일본우주항공연구개발기구(JAXA), 캐나다우주국(CSA) 등과 함께 1990년대 초반 ISS 프로젝트를 공식적으로 시작했다. 이 프로젝트는 총 15개국(미국, 러시아, 캐나다, 일본, 벨기에, 덴마크, 프랑스, 독일, 이탈리아, 네덜란드, 노르웨이, 스페인, 스웨덴, 스위스, 영국)이 참여하는 인류 역사상 가장 큰 국제 과학 기술 협력 사업으로 자리매김했다. 각 참여국은 재정적 기여뿐만 아니라 자체 모듈 개발 및 기술 지원을 통해 프로젝트에 참여했다.
2.2. 주요 모듈 및 건설 단계
ISS의 건설은 1998년 11월 러시아의 ‘자랴(Zarya)’ 모듈 발사로 시작되었다. 자랴는 ISS의 초기 전력, 추진, 보관 기능을 담당하는 핵심 모듈이었다. 한 달 뒤, 미국은 ‘유니티(Unity)’ 모듈을 발사하여 자랴와 연결하며 ISS의 첫 번째 연결 허브를 구축했다. 이후 2000년 러시아의 ‘즈베즈다(Zvezda)’ 모듈이 발사되어 승무원 거주 및 생명 유지 시스템을 제공하며 ISS에 상주 승무원이 거주하기 시작했다.
건설은 다양한 국가의 모듈들이 순차적으로 조립되는 방식으로 진행되었다. 주요 모듈들은 다음과 같다:
- 자랴 (Zarya, 러시아, 1998년): ISS의 첫 모듈로, 초기 전력 공급, 추진, 보관 기능을 담당했다.
- 유니티 (Unity, 미국, 1998년): ISS의 첫 번째 연결 노드로, 다른 모듈들을 연결하는 허브 역할을 한다.
- 즈베즈다 (Zvezda, 러시아, 2000년): ISS의 서비스 모듈로, 초기 승무원 거주 공간, 생명 유지 시스템, 추진 및 통신 기능을 제공했다.
- 데스티니 (Destiny, 미국, 2001년): 미국의 주요 과학 실험실 모듈로, 다양한 연구 장비를 수용한다.
- 퀘스트 (Quest, 미국, 2001년): 우주 유영(EVA)을 위한 에어록 모듈이다.
- 피르스 (Pirs, 러시아, 2001년): 도킹 포트이자 에어록으로 사용되었다 (2021년 제거됨).
- 콜럼버스 (Columbus, 유럽, 2008년): 유럽우주국(ESA)의 주요 과학 실험실 모듈로, 유럽의 우주 과학 연구를 위한 공간을 제공한다.
- 키보 (Kibo, 일본, 2008~2009년): 일본우주항공연구개발기구(JAXA)의 모듈로, ISS에서 가장 큰 단일 모듈이며, 내부 실험실, 외부 노출 시설, 로봇 팔 등으로 구성되어 다양한 실험이 가능하다.
- 트랭퀼리티 (Tranquility, 미국, 2010년): 추가적인 생명 유지 시스템과 승무원 거주 공간을 제공하며, 큐폴라(Cupola) 관측창이 연결되어 있다.
- 레오나르도 (Leonardo, 미국, 2011년): 다목적 보급 모듈(MPLM)로 사용되다가 영구 모듈로 전환되어 보관 및 실험 공간으로 활용된다.
- 나우카 (Nauka, 러시아, 2021년): 러시아의 다목적 실험실 모듈로, 새로운 도킹 포트와 실험 공간을 제공한다.
이러한 모듈들은 수십 차례의 우주왕복선 및 로켓 발사를 통해 지구 궤도로 운반되었으며, 우주 비행사들의 우주 유영을 통해 정교하게 조립되어 현재의 거대한 ISS를 완성했다.
3. ISS의 구조와 핵심 기술
ISS는 우주라는 극한 환경에서 인간이 생존하고 복잡한 과학 연구를 수행할 수 있도록 설계된 첨단 기술의 집약체이다. 그 구조는 가압 모듈과 비가압 요소로 나뉘며, 다양한 생명 유지 및 운영 시스템이 필수적이다.
3.1. 주요 구성 모듈
ISS는 크게 가압 모듈(Pressurized Modules)과 비가압 요소(Unpressurized Elements)로 구성된다.
- 가압 모듈: 승무원이 생활하고 연구하는 공간으로, 지구와 유사한 대기압과 온도를 유지한다. 미국의 데스티니, 유럽의 콜럼버스, 일본의 키보 실험실 모듈과 러시아의 즈베즈다 서비스 모듈, 그리고 여러 연결 노드(Unity, Harmony, Tranquility) 등이 여기에 해당한다. 이 모듈들은 서로 연결되어 승무원들이 자유롭게 이동할 수 있는 내부 공간을 형성한다.
- 비가압 요소: 우주 공간에 직접 노출되어 있는 구조물들로, 주로 전력 생산, 열 방출, 외부 실험 장비 설치 등의 역할을 한다. 대표적으로 거대한 태양 전지판(Solar Arrays)과 라디에이터(Radiators), 그리고 외부 실험 플랫폼 등이 있다. 태양 전지판은 ISS 운영에 필요한 전력을 생산하며, 라디에이터는 내부에서 발생하는 열을 우주 공간으로 방출하여 온도를 조절한다.
- 로봇 팔 (Robotic Arms): 캐나다우주국(CSA)이 개발한 ‘캐나다암2(Canadarm2)’는 ISS의 핵심적인 로봇 팔이다. 이 로봇 팔은 모듈 조립, 보급선 도킹 지원, 우주 유영 중인 우주 비행사 지원, 외부 장비 설치 및 유지보수 등 다양한 임무를 수행한다. 일본의 키보 모듈에도 자체 로봇 팔이 장착되어 있다.
3.2. 생명 유지 및 운영 시스템
ISS는 승무원들이 장기간 안전하게 거주할 수 있도록 정교한 생명 유지 및 운영 시스템을 갖추고 있다.
- 대기 제어 시스템 (Environmental Control and Life Support System, ECLSS): 이 시스템은 산소 공급, 이산화탄소 제거, 습도 조절, 공기 정화 등의 기능을 수행한다. 물 재생 시스템은 승무원의 소변과 공기 중의 습기를 정화하여 식수로 재활용함으로써 지구로부터의 물 보급 의존도를 크게 줄인다.
- 전력 시스템: 거대한 태양 전지판은 태양 에너지를 전기로 변환하며, 이 전기는 니켈-수소 배터리(초기) 또는 리튬-이온 배터리(현재)에 저장되어 ISS가 지구 그림자 속에 있을 때도 전력을 공급한다.
- 열 제어 시스템 (Thermal Control System): ISS는 태양에 노출될 때 극심한 고온(121°C)에, 지구 그림자 속에 있을 때 극심한 저온(-157°C)에 노출된다. 열 제어 시스템은 내부 장비와 승무원 공간을 적정 온도로 유지하기 위해 액체 암모니아를 순환시키는 외부 라디에이터와 내부 냉각 시스템을 사용한다.
- 통신 및 컴퓨터 시스템: ISS는 지구 관제센터와 지속적으로 통신하며, 이를 위해 위성 통신 시스템(예: TDRS 위성망)을 활용한다. 온보드 컴퓨터 시스템은 정거장의 모든 시스템을 모니터링하고 제어하며, 승무원들은 이를 통해 연구 데이터를 전송하고 지구와 소통한다.
3.3. 궤도 및 자세 제어
ISS는 지구 상공 약 400km의 저궤도(Low Earth Orbit, LEO)에서 51.6도의 궤도 경사각을 유지하며 비행한다. 이 궤도는 지구의 대부분 인구 밀집 지역 상공을 지나며, 다양한 연구 및 관측 기회를 제공한다.
- 고도 유지: ISS는 미세한 대기 저항으로 인해 지속적으로 고도가 낮아진다. 이를 보정하기 위해 러시아의 프로그레스(Progress) 보급선이나 ISS 자체의 추진 시스템을 사용하여 주기적으로 궤도를 높이는 ‘궤도 재부양(Reboost)’ 작업을 수행한다.
- 자세 제어: ISS의 자세는 지구 관측, 태양 전지판의 효율적인 태양광 수신, 통신 안테나의 지구 지향 등을 위해 정교하게 제어된다. 주로 자이로스코프(Control Moment Gyroscopes, CMG)를 사용하여 자세를 안정화하고, 필요시 추진기를 사용하여 자세를 변경한다.
- 우주 쓰레기 보호: ISS는 우주 쓰레기(Space Debris)와의 충돌 위험에 항상 노출되어 있다. 지상 관제센터는 우주 쓰레기의 궤도를 지속적으로 추적하며, 충돌 위험이 감지될 경우 ISS의 궤도를 변경하는 회피 기동(Debris Avoidance Maneuver, DAM)을 수행한다. 또한, 주요 모듈은 다층 방어막(Whipple Shield)으로 보호되어 작은 파편으로부터의 피해를 최소화한다.
4. ISS의 과학 연구 및 활용 분야
ISS는 독특한 미세중력 환경과 지구를 관측할 수 있는 위치를 활용하여 인류의 지식 확장에 기여하는 다양한 과학 연구와 활용 분야를 제공한다.
4.1. 무중력 환경 연구
ISS의 가장 큰 장점은 지구에서는 구현하기 어려운 지속적인 미세중력 환경을 제공한다는 점이다. 이를 활용한 연구는 다음과 같다.
- 인체에 미치는 영향 연구: 장기간 무중력 노출은 골밀도 감소, 근육 위축, 시력 변화, 면역 체계 약화 등 인체에 다양한 영향을 미친다. ISS에서는 우주 비행사들을 대상으로 이러한 변화를 연구하고, 이를 완화하기 위한 운동법, 약물, 영양 요법 등을 개발한다. 이는 미래의 장기 우주 탐사 임무에 필수적인 정보를 제공한다.
- 재료 과학 및 유체 물리학: 무중력 환경에서는 중력의 영향을 받지 않아 순수한 결정 성장, 새로운 합금 개발, 복잡한 유체 거동 연구 등이 가능하다. 예를 들어, 지구에서는 침전되거나 부유하는 입자들이 무중력에서는 균일하게 분포되어 고품질의 재료를 생산하거나 새로운 물리 현상을 관찰할 수 있다.
- 생명 공학 및 의학 연구: 세포 배양, 단백질 결정화, 조직 공학 등 생명 공학 분야에서 무중력은 독특한 조건을 제공한다. 암세포 연구, 신약 개발, 인공 장기 개발 등 지구에서의 난치병 치료에 기여할 수 있는 연구가 진행된다.
- 연소 과학: 무중력에서는 불꽃이 구형으로 타오르거나 연소 과정이 다르게 진행된다. 이를 통해 연소 메커니즘을 더 깊이 이해하고, 지구에서의 화재 안전 기술이나 효율적인 연소 엔진 개발에 응용할 수 있다.
4.2. 지구 관측 및 우주 탐사
ISS는 지구 저궤도에 위치하여 지구 관측 및 심우주 탐사 기술 시험을 위한 이상적인 플랫폼이다.
- 지구 환경 변화 감시: ISS에 설치된 다양한 센서와 카메라를 통해 지구의 기후 변화, 해양 오염, 산림 파괴, 자연재해(허리케인, 화산 폭발 등) 등을 실시간으로 관측하고 데이터를 수집한다. 이는 지구 과학 연구와 환경 보호 정책 수립에 중요한 자료를 제공한다.
- 천문 관측: 지구 대기의 간섭을 받지 않는 우주 공간에서 ISS는 X선 망원경, 우주선 검출기 등을 이용한 천문 관측을 수행한다. 예를 들어, ‘알파 자기 분광기(Alpha Magnetic Spectrometer, AMS-02)’는 암흑 물질과 반물질을 탐색하는 중요한 실험을 진행하고 있다.
- 미래 심우주 탐사 기술 시험장: ISS는 달 기지 건설이나 화성 탐사와 같은 미래의 심우주 임무를 위한 기술 시험장 역할을 한다. 새로운 추진 시스템, 방사선 차폐 기술, 재활용 생명 유지 시스템, 자율 로봇 기술 등이 ISS에서 시험되고 검증된다.
4.3. 교육 및 문화적 활용
ISS는 과학 연구를 넘어 대중에게 우주에 대한 영감을 주고 교육하는 중요한 역할을 수행한다.
- 우주 교육 프로그램: ISS 승무원들은 지구의 학생들과 직접 통신하거나, 우주에서의 과학 실험을 시연하는 비디오를 제작하여 교육 자료로 활용한다. 이를 통해 차세대 과학자 및 엔지니어들에게 우주 과학에 대한 흥미를 유발하고 학습을 장려한다.
- 문화 콘텐츠 제작 및 대중 참여: 우주 비행사들은 ISS에서의 일상과 지구의 아름다운 모습을 촬영하여 소셜 미디어를 통해 공유하며 대중과의 소통을 활발히 한다. 영화 촬영, 예술 프로젝트 등 다양한 문화 콘텐츠 제작에도 ISS가 활용되어 우주에 대한 대중의 관심을 높이는 데 기여한다.
- 국제 협력의 상징: ISS는 서로 다른 문화와 정치 체제를 가진 국가들이 공동의 목표를 위해 협력하는 모범적인 사례로, 국제 평화와 이해 증진에 기여하는 문화적 상징성을 지닌다.
5. ISS의 현재 운영 현황 및 동향
ISS는 2000년 11월 첫 상주 승무원이 탑승한 이래 20년 이상 지속적으로 운영되고 있으며, 최근에는 민간 우주 기업의 참여가 확대되면서 새로운 전환점을 맞이하고 있다.
5.1. 임무 및 승무원 운영
ISS에는 통상 6~7명의 승무원이 상주하며, 이들은 3~6개월 주기로 교대된다. 승무원들은 다양한 국적의 우주 비행사들로 구성되며, 각자의 전문 분야에 따라 과학 실험 수행, 정거장 유지보수, 지구 관제센터와의 통신 등의 임무를 수행한다.
- 정기적인 승무원 교대: 러시아의 소유즈(Soyuz) 우주선과 미국의 크루 드래곤(Crew Dragon), 스타라이너(Starliner) 등 유인 우주선을 통해 승무원들이 ISS로 향하고 지구로 귀환한다.
- 우주 유영 (Extravehicular Activity, EVA): 정거장 외부에서의 정비, 수리, 장비 설치 등을 위해 우주 비행사들이 우주복을 입고 우주 유영을 수행한다. 이는 고도의 훈련과 위험을 수반하는 중요한 임무이다.
- 보급 임무: 식량, 물, 산소, 연료, 실험 장비 등 필수품은 러시아의 프로그레스, 미국의 스페이스X 드래곤(Dragon), 노스럽 그러먼 시그너스(Cygnus), 일본의 HTV(H-II Transfer Vehicle) 등 무인 화물 우주선을 통해 정기적으로 보급된다.
- 일상적인 운영 및 유지보수: 승무원들은 매일 정거장의 시스템을 점검하고, 고장 난 부품을 수리하며, 청소 및 운동을 통해 건강을 유지한다.
5.2. 민간 우주 비행 및 상업적 활용
최근 몇 년간 ISS 운영에서 가장 두드러진 변화는 민간 우주 기업의 역할 확대이다.
- 민간 유인 우주 비행: 미국의 NASA는 상업 승무원 프로그램(Commercial Crew Program)을 통해 스페이스X(SpaceX)와 보잉(Boeing) 같은 민간 기업에게 ISS로의 유인 수송 임무를 위탁했다. 스페이스X의 크루 드래곤은 2020년부터 정기적으로 우주 비행사들을 ISS로 수송하고 있으며, 보잉의 스타라이너도 시험 비행을 거쳐 곧 임무에 투입될 예정이다. 이는 정부 주도의 우주 비행 시대에서 민간 주도의 시대로의 전환을 의미한다.
- ISS의 상업적 활용 확대: NASA는 ISS의 일부를 민간 기업에 개방하여 상업적 연구, 우주 관광, 영화 촬영 등 다양한 활동을 허용하고 있다. 액시엄 스페이스(Axiom Space)와 같은 기업들은 민간 우주 비행사들을 ISS로 보내는 임무를 수행하고 있으며, 미래에는 ISS에 상업용 모듈을 추가하거나 독립적인 민간 우주 정거장을 건설할 계획도 발표되었다. 이러한 움직임은 우주 경제의 새로운 지평을 열고 있다.
6. ISS의 미래 전망과 도전 과제
ISS는 인류의 우주 탐사에 지대한 공헌을 해왔지만, 노후화와 운영 비용 등의 문제로 인해 임무 종료가 논의되고 있으며, 그 이후의 우주 인프라에 대한 활발한 논의가 진행 중이다.
6.1. 임무 종료 계획 및 대안
NASA를 비롯한 ISS 참여국들은 ISS의 운영을 2030년까지 연장하는 데 합의했다. 이후에는 ISS를 폐기할 계획이며, 현재 가장 유력한 방법은 ISS를 지구 대기권으로 재진입시켜 태평양의 무인 해역(Point Nemo)에 안전하게 추락시키는 것이다.
ISS의 뒤를 이을 대안으로는 민간 우주 정거장 건설이 활발히 논의되고 있다. 액시엄 스페이스, 오비탈 리프(Orbital Reef, Blue Origin과 Sierra Space 컨소시엄), 스태리랩스(Starlab, Voyager Space와 Airbus 컨소시엄) 등 여러 민간 기업들이 독자적인 상업용 우주 정거장을 개발 중이다. 이들 민간 정거장은 ISS의 연구 기능을 계승하면서도 상업적 활용을 더욱 확대하여 우주 경제를 활성화할 것으로 기대된다.
6.2. 우주 탐사에서의 역할 변화
ISS의 임무 종료 이후, 인류의 우주 탐사는 달과 화성을 향한 심우주로 확장될 것이다.
- 달 기지 및 게이트웨이: NASA의 아르테미스(Artemis) 프로그램은 2020년대 중반까지 달에 인간을 다시 보내고, 장기적으로 달 궤도에 ‘루나 게이트웨이(Lunar Gateway)’ 우주 정거장을 건설하여 달 탐사의 전초기지로 활용할 계획이다. 게이트웨이는 ISS와 유사하게 국제 협력을 통해 건설될 예정이며, 달과 화성 탐사를 위한 기술 시험 및 보급 기지 역할을 수행할 것이다.
- 화성 탐사 지원: ISS에서 얻은 장기간 우주 체류의 인체 영향, 방사선 차폐 기술, 생명 유지 시스템 등의 데이터는 화성 유인 탐사를 위한 핵심적인 정보를 제공했다. 미래에는 게이트웨이와 같은 달 궤도 정거장이 화성 탐사 임무의 출발점이 되거나, 화성으로 향하는 우주선의 중간 경유지 역할을 할 수 있다.
- 새로운 우주 플랫폼의 등장: ISS의 경험을 바탕으로, 더 작고 모듈화된 우주 정거장, 특정 목적에 특화된 연구 플랫폼, 또는 우주 제조 시설 등 다양한 형태의 새로운 우주 인프라가 등장할 것으로 예상된다. 이러한 플랫폼들은 인류의 우주 활동 영역을 더욱 넓히고, 우주 자원 활용 및 우주 산업 발전에 기여할 것이다.
ISS는 인류가 지구 궤도에 건설한 가장 복잡하고 협력적인 구조물로서, 우주 탐사의 새로운 시대를 여는 데 중요한 교두보 역할을 수행했다. 그 유산은 미래의 우주 정거장과 심우주 탐사 임무에 계속 이어질 것이다.
참고 문헌
- NASA. (n.d.). International Space Station. Retrieved from https://www.nasa.gov/mission_pages/station/main/index.html
- European Space Agency. (n.d.). International Space Station. Retrieved from https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/International_Space_Station
- Canadian Space Agency. (n.d.). International Space Station. Retrieved from https://www.asc-csa.gc.ca/eng/iss/default.asp
- Roscosmos. (n.d.). Zarya. Retrieved from https://www.roscosmos.ru/278/
- European Space Agency. (n.d.). Columbus laboratory. Retrieved from https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Columbus
- JAXA. (n.d.). Kibo. Retrieved from https://iss.jaxa.jp/en/kibo/
- NASA. (2021, July 29). Russia’s Nauka Module Docks to Space Station. Retrieved from https://www.nasa.gov/feature/russia-s-nauka-module-docks-to-space-station
- Canadian Space Agency. (n.d.). Canadarm2. Retrieved from https://www.asc-csa.gc.ca/eng/iss/canadarm2/default.asp
- NASA. (2020, March 13). Water Recycling on the International Space Station. Retrieved from https://www.nasa.gov/feature/water-recycling-on-the-international-space-station
- NASA. (2018, May 17). Space Station Batteries. Retrieved from https://www.nasa.gov/feature/space-station-batteries
- NASA. (n.d.). Thermal Control System. Retrieved from https://www.nasa.gov/mission_pages/station/structure/elements/thermal-control-system.html
- NASA. (2023, August 28). Space Station Reboosted to Higher Altitude. Retrieved from https://www.nasa.gov/station/space-station-reboosted-to-higher-altitude/
- European Space Agency. (n.d.). Space debris. Retrieved from https://www.esa.int/Safety_Security/Space_Debris
- NASA. (n.d.). Human Research Program. Retrieved from https://www.nasa.gov/hrp/
- The Center for the Advancement of Science in Space (CASIS). (n.d.). Life Sciences. Retrieved from https://www.issnationallab.org/research-on-the-iss/life-sciences/
- NASA. (n.d.). Earth Science from the ISS. Retrieved from https://www.nasa.gov/mission_pages/station/research/experiments/earth_science_iss.html
- AMS-02 Collaboration. (n.d.). Alpha Magnetic Spectrometer. Retrieved from https://ams02.space/en/
- NASA. (n.d.). STEM on Station. Retrieved from https://www.nasa.gov/stem/forstudents/station/
- NASA. (n.d.). Commercial Crew Program. Retrieved from https://www.nasa.gov/commercialcrew/
- NASA. (n.d.). Commercial Resupply. Retrieved from https://www.nasa.gov/mission_pages/station/structure/elements/commercial-resupply.html
- Boeing. (n.d.). Starliner. Retrieved from https://www.boeing.com/space/starliner/
- Axiom Space. (n.d.). Commercial Space Station. Retrieved from https://www.axiomspace.com/commercial-space-station
- NASA. (2022, January 31). International Space Station Transition Plan. Retrieved from https://www.nasa.gov/news-release/nasa-commits-to-extending-iss-operations-through-2030/
- Space.com. (2023, November 29). The private space stations that could replace the ISS. Retrieved from https://www.space.com/private-space-stations-to-replace-iss
- NASA. (n.d.). Gateway. Retrieved from https://www.nasa.gov/gateway/
“`
© 2025 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
기사 제보
제보하실 내용이 있으시면 techmore.main@gmail.com으로 연락주세요.

