1. MoE(Mixture of Experts) 개념 정의
MoE(Mixture of Experts), 즉 ‘전문가 혼합’ 아키텍처는 인공지능 모델의 효율성과 성능을 동시에 극대화하기 위해 고안된 혁신적인 접근 방식이다. 이는 여러 개의 작은 ‘전문가(Expert)’ 모델과 이들 중 어떤 전문가를 활성화할지 결정하는 ‘게이팅 네트워크(Gating Network)’ 또는 ‘라우터(Router)’로 구성된 모델 아키텍처를 의미한다. 전통적인 딥러닝 모델이 모든 입력 데이터에 대해 동일한 전체 네트워크를 사용하는 것과 달리, MoE는 입력 데이터의 특성에 따라 가장 적합한 소수의 전문가만 선택적으로 활성화하여 연산을 수행하는 ‘조건부 연산(Conditional Computation)’ 방식을 채택한다. 이는 마치 특정 문제에 대해 여러 분야의 전문가 중 가장 적합한 전문가에게만 자문을 구하는 것과 유사하다.
이러한 조건부 연산 덕분에 MoE 모델은 전체 모델 파라미터 수는 매우 크지만, 특정 시점에 실제로 활성화되는 파라미터 수는 훨씬 적어 계산 비용을 효율적으로 관리할 수 있다. 특히 대규모 언어 모델(LLM)의 등장과 함께 그 중요성이 더욱 부각되고 있으며, 제한된 컴퓨팅 자원으로도 거대한 모델을 학습하고 추론할 수 있게 하는 핵심 기술로 주목받고 있다. 예를 들어, 수십억 또는 수조 개의 파라미터를 가진 모델을 전체적으로 활성화하는 것은 막대한 계산 자원을 요구하지만, MoE는 필요한 부분만 선택적으로 사용함으로써 이러한 문제를 해결하는 데 기여한다.
2. MoE의 역사 및 발전 과정
MoE 개념은 딥러닝 분야에서 비교적 최근에 주목받기 시작했지만, 그 뿌리는 1991년 마이클 조던(Michael I. Jordan)과 로버트 제이콥스(Robert A. Jacobs) 등의 연구에서 처음 제안된 고전적인 앙상블 기법으로 거슬러 올라간다. 초기 MoE 모델은 여러 개의 신경망 모델을 훈련하고, 각 모델의 출력을 가중 평균하여 최종 예측을 생성하는 방식으로 작동했다. 그러나 당시에는 컴퓨팅 자원의 제약과 훈련의 복잡성으로 인해 널리 활용되지 못했다.
MoE가 딥러닝 분야에서 본격적으로 주목받기 시작한 것은 2017년 구글 브레인(Google Brain)의 노암 샤제르(Noam Shazeer) 등이 발표한 “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer” 논문에서 희소하게 활성화되는 MoE 레이어가 제안되면서부터이다. 이 논문은 트랜스포머(Transformer) 아키텍처의 피드포워드 네트워크(FFN) 레이어를 MoE 레이어로 대체하여 모델의 용량을 기하급수적으로 확장하면서도 계산 비용은 효율적으로 유지할 수 있음을 보여주었다. 이 연구는 MoE가 대규모 모델을 구축하는 데 실질적인 해결책이 될 수 있음을 입증하며, 이후 수많은 후속 연구의 기반을 마련하였다.
이후 MoE 아키텍처는 지속적으로 발전하였다. 2020년에는 구글(Google)에서 대규모 다국어 트랜스포머 모델인 GShard를 발표하며 MoE를 활용한 확장성을 다시 한번 입증했다. GShard는 수조 개의 파라미터를 가진 모델을 효율적으로 훈련할 수 있음을 보여주었으며, 이는 대규모 언어 모델의 시대를 여는 중요한 이정표가 되었다. 2022년에는 Megablocks와 같은 연구를 통해 MoE 모델의 훈련 및 추론 효율성을 더욱 향상시키는 기술들이 제안되었으며, 이는 MoE가 실제 대규모 언어 모델에 성공적으로 적용될 수 있는 기반을 다졌다. 이러한 발전 과정을 거쳐 MoE는 GPT-4, Mixtral 8x7B, PaLM 등 최신 대규모 언어 모델의 핵심 구성 요소로 자리매김하게 되었다.
3. MoE의 핵심 원리 및 구성 요소
MoE 아키텍처의 핵심 원리는 ‘조건부 연산(Conditional Computation)’에 있다. 이는 모든 입력 데이터에 대해 전체 모델을 사용하는 대신, 입력 데이터의 특성에 따라 가장 적합한 특정 부분만 선택적으로 활성화하여 연산을 수행하는 방식이다. 이러한 효율적인 연산을 가능하게 하는 주요 구성 요소는 ‘전문가 네트워크(Experts)’와 ‘게이팅 네트워크(Gating Network)’이다.
이 게이팅 네트워크는 희소 활성화(Sparse Activation)를 통해 모든 전문가가 아닌 일부 전문가만 활성화하여 계산 효율성을 높인다. 즉, 입력 데이터가 들어오면 게이팅 네트워크가 이를 분석하여 어떤 전문가가 해당 데이터를 처리하는 데 가장 적합한지 판단하고, 해당 전문가들만 활성화하여 연산을 수행하게 된다. 이로 인해 모델의 전체 파라미터 수는 매우 커질 수 있지만, 실제 연산에 참여하는 파라미터 수는 제한되어 계산 비용을 절감할 수 있다.
3.1. 전문가 네트워크 (Experts)
전문가 네트워크는 MoE 아키텍처의 핵심적인 연산 단위이다. 각각의 전문가 네트워크는 특정 유형의 데이터나 작업에 특화되어 학습되며, 일반적으로 동일한 아키텍처를 가지지만 서로 다른 가중치를 학습한다. 예를 들어, 트랜스포머 모델에서 MoE를 구현할 경우, 각 전문가는 독립적인 피드포워드 네트워크(FFN)가 될 수 있다. 이들은 모델의 전체 용량을 크게 확장하면서도 실제 연산량은 효율적으로 유지하는 데 기여한다.
전문가들은 특정 도메인, 언어, 또는 데이터 패턴에 대한 깊은 이해를 학습할 수 있다. 예를 들어, 다국어 번역 모델에서는 특정 언어 쌍에 특화된 전문가가 존재할 수 있고, 이미지 처리 모델에서는 특정 객체나 질감 인식에 특화된 전문가가 존재할 수 있다. 이러한 전문가들은 독립적으로 훈련되거나, 전체 MoE 시스템의 일부로 함께 훈련될 수 있다. 전문가의 수가 많아질수록 모델의 잠재적인 용량은 기하급수적으로 증가하며, 이는 복잡한 태스크를 처리하는 데 필요한 풍부한 지식을 모델이 습득할 수 있도록 돕는다.
3.2. 게이팅 네트워크 (Gating Network / Router)
게이팅 네트워크는 MoE 아키텍처의 ‘두뇌’ 역할을 한다. 이 네트워크는 입력 토큰(또는 데이터)이 들어왔을 때, 이를 처리할 최적의 전문가를 동적으로 선택하는 역할을 한다. 게이팅 네트워크는 일반적으로 입력 데이터를 받아 각 전문가에게 할당될 ‘가중치’ 또는 ‘점수’를 출력한다. 이 점수를 기반으로 특정 수의 전문가(예: Top-K 전문가)가 선정되며, 선정된 전문가들의 출력을 가중 평균하여 최종 결과를 생성한다.
게이팅 네트워크를 구현하는 방식에는 여러 가지가 있다. 가장 기본적인 형태는 ‘Softmax Gating’으로, 모든 전문가에 대한 점수를 계산한 후 Softmax 함수를 적용하여 확률 분포를 얻고, 이 확률에 따라 모든 전문가의 출력을 가중 평균하는 방식이다. 그러나 이 방식은 모든 전문가를 활성화하므로 희소성(Sparsity)을 활용하지 못한다는 단점이 있다.
이를 개선하기 위해 ‘Noisy Top-K Gating’과 같은 방식이 널리 사용된다. 이 방식은 각 전문가에 대한 점수에 노이즈를 추가한 후, 가장 높은 점수를 받은 K개의 전문가만 선택적으로 활성화한다. 여기서 K는 일반적으로 1 또는 2와 같은 작은 정수이다. 선택되지 않은 전문가들은 연산에 참여하지 않으므로 계산 효율성이 크게 향상된다. 또한, 게이팅 네트워크는 훈련 과정에서 특정 전문가에게 작업이 몰리는 ‘로드 불균형(Load Imbalance)’ 문제를 완화하기 위해 ‘로드 밸런싱(Load Balancing)’ 손실 함수를 함께 최적화하기도 한다. 이 손실 함수는 각 전문가에게 고르게 작업이 분배되도록 유도하여 모델의 전반적인 효율성을 높인다.
4. 딥러닝에서의 MoE 구현 및 발전
최근 딥러닝, 특히 트랜스포머(Transformer) 모델의 FFN(Feed Forward Network) 레이어를 MoE 레이어로 대체하는 방식으로 MoE 구현이 활발히 이루어지고 있다. 트랜스포머 아키텍처는 인코더와 디코더 각각 여러 개의 레이어로 구성되며, 각 레이어는 멀티헤드 어텐션(Multi-Head Attention)과 FFN으로 이루어진다. 이 FFN은 모델 파라미터의 상당 부분을 차지하며, 모델의 용량을 결정하는 중요한 요소이다. 따라서 FFN 레이어를 MoE 레이어로 대체함으로써 모델 용량을 크게 늘리면서도 추론 속도를 빠르게 유지할 수 있게 된다.
트랜스포머 기반의 MoE 모델은 일반적으로 각 토큰(또는 시퀀스)이 들어올 때마다 게이팅 네트워크가 이를 분석하여 몇 개의 전문가(예: Top-2 전문가)를 선택하고, 선택된 전문가들만 해당 토큰에 대한 연산을 수행한다. 이러한 방식은 모델의 총 파라미터 수를 수십억에서 수조 개까지 확장할 수 있게 하면서도, 각 추론 단계에서 실제로 활성화되는 파라미터 수는 훨씬 적게 유지하여 계산 비용을 효율적으로 관리한다.
MoE 구현에서 중요한 기술적 과제 중 하나는 ‘로드 밸런싱(Load Balancing)’이다. 게이팅 네트워크가 특정 전문가에게만 지속적으로 작업을 할당하면, 해당 전문가만 과부하되고 다른 전문가들은 충분히 활용되지 못하는 ‘로드 불균형’ 현상이 발생할 수 있다. 이는 모델의 학습 효율성과 성능 저하로 이어진다. 이를 방지하기 위해 MoE 모델은 훈련 과정에서 로드 밸런싱 손실(Load Balancing Loss)을 추가하여 각 전문가에게 작업이 고르게 분배되도록 유도한다. 예를 들어, 각 전문가에게 할당된 토큰의 평균 개수를 균등하게 만들거나, 전문가 활성화 빈도를 평준화하는 등의 기법이 사용된다.
또한, MoE 모델은 분산 컴퓨팅 환경에서 효율적으로 구현되어야 한다. 수많은 전문가를 여러 GPU 또는 TPU 장치에 분산 배치하고, 게이팅 네트워크가 선택한 전문가로 데이터를 효율적으로 라우팅하는 기술이 필수적이다. Megablocks와 같은 최신 연구는 MoE 모델의 효율적인 분산 훈련 및 추론을 위한 최적화된 라이브러리와 아키텍처를 제안하며, 이는 MoE의 실용성을 크게 높이는 데 기여하고 있다.
5. 주요 활용 사례 및 응용 분야
MoE 아키텍처는 그 뛰어난 성능과 효율성 덕분에 다양한 인공지능 분야에서 핵심 기술로 자리매김하고 있다. 특히 대규모 언어 모델(LLM) 분야에서 MoE의 활용은 혁신적인 발전을 가져왔다.
- 대규모 언어 모델 (LLM): 현재 MoE는 GPT-4, Mixtral 8x7B, PaLM, Switch Transformer와 같은 최신 대규모 언어 모델에서 뛰어난 성능과 효율성을 보여주며 널리 활용되고 있다. GPT-4는 비공식적으로 MoE 아키텍처를 사용하며 1조 7천억 개 이상의 파라미터를 가진 것으로 추정된다. 미스트랄 AI(Mistral AI)의 Mixtral 8x7B는 8개의 전문가를 가진 MoE 모델로, 각 토큰에 대해 2개의 전문가만 활성화하여 450억 개의 파라미터만으로 8x7B(총 470억 개 파라미터)에 달하는 강력한 성능을 제공한다. 구글의 Switch Transformer는 수조 개의 파라미터를 가진 모델을 효율적으로 훈련할 수 있음을 보여주었으며, 이는 MoE의 확장성을 입증하는 중요한 사례이다. 이러한 모델들은 MoE를 통해 방대한 지식을 학습하고 복잡한 추론을 수행하면서도 합리적인 추론 속도를 유지할 수 있다.
- 번역 시스템: 구글 번역(Google Translate)과 같은 번역 시스템에서도 MoE는 다국어 번역의 정확도와 효율성을 높이는 데 기여한다. 특정 언어 쌍이나 번역 도메인에 특화된 전문가를 활용하여 번역 품질을 향상시킬 수 있다.
- 이미지 생성 AI: DALL·E, Stable Diffusion과 같은 이미지 생성 AI 모델에서도 MoE의 잠재력이 탐구되고 있다. 다양한 스타일, 객체, 또는 이미지 특성에 특화된 전문가를 활용하여 더욱 다양하고 고품질의 이미지를 생성하는 데 응용될 수 있다.
- 추천 시스템: 사용자 행동 패턴이나 아이템 특성에 따라 다른 전문가를 활성화하는 방식으로 추천 시스템의 개인화 및 정확도를 높일 수 있다. 특정 사용자 그룹이나 아이템 카테고리에 대한 추천에 특화된 전문가를 활용함으로써 보다 정교한 추천을 제공할 수 있다.
- 음성 인식 및 자연어 처리: 음성 인식 모델에서는 다양한 악센트나 언어에 특화된 전문가를, 자연어 처리에서는 특정 문맥이나 개체명 인식에 특화된 전문가를 활용하여 성능을 개선할 수 있다.
이처럼 MoE는 단순히 모델의 크기를 키우는 것을 넘어, 특정 작업에 대한 전문성을 강화하고 자원 활용 효율성을 높임으로써 다양한 AI 응용 분야에서 혁신적인 발전을 이끌고 있다.
6. 현재 동향 및 해결 과제
현재 MoE는 대규모 언어 모델(LLM)의 성능과 효율성을 동시에 높이는 핵심 기술로 자리매김하고 있으며, Mixtral, GPT-4, 클로드(Claude), 키미 K2.5 등 다양한 최신 모델들이 MoE 아키텍처를 채택하고 있다. 특히, Mixtral 8x7B는 개방형 모델임에도 불구하고 GPT-3.5와 유사하거나 더 나은 성능을 보여주며 MoE의 강력함을 입증하였다. 이러한 동향은 향후 더 많은 LLM이 MoE 아키텍처를 도입할 것임을 시사한다.
그러나 MoE 아키텍처가 가진 잠재력만큼이나 해결해야 할 과제들도 명확히 존재한다. 주요 해결 과제는 다음과 같다.
- 게이팅 네트워크의 불안정성: 게이팅 네트워크는 어떤 전문가를 활성화할지 결정하는 중요한 역할을 하지만, 훈련 과정에서 불안정성을 보이거나 최적의 전문가를 항상 정확하게 선택하지 못할 수 있다. 이는 모델의 성능 저하로 이어질 수 있으며, 게이팅 메커니즘을 더욱 견고하고 효율적으로 만드는 연구가 필요하다.
- 로드 불균형(Load Imbalance): 특정 전문가에게 트래픽이 집중되는 로드 불균형 현상은 MoE 모델의 효율성을 저해하는 주요 문제이다. 이는 특정 전문가가 과부하되어 병목 현상을 일으키거나, 다른 전문가들이 충분히 활용되지 못하게 하여 전체적인 컴퓨팅 자원 활용 효율을 떨어뜨린다. 로드 밸런싱 손실 함수나 동적 라우팅 전략 개선을 통해 이 문제를 해결하려는 연구가 활발히 진행 중이다.
- 복잡한 하드웨어 배치 및 프레임워크 최적화: MoE 모델은 수많은 전문가를 포함하며, 이들을 여러 컴퓨팅 장치에 효율적으로 분산 배치하고 관리하는 것이 매우 복잡하다. 또한, 기존 딥러닝 프레임워크는 MoE와 같은 희소 활성화 아키텍처에 최적화되어 있지 않아, 커스텀 커널 개발이나 새로운 프레임워크 수준의 최적화가 요구된다. 이는 MoE 모델의 개발 및 배포 비용을 증가시키는 요인이 된다.
- 추론 지연 시간(Latency) 문제: MoE 모델은 전체 파라미터 수가 크기 때문에, 비록 일부 전문가만 활성화되더라도 모델 로딩 및 전문가 간 데이터 전송에서 발생하는 오버헤드로 인해 추론 지연 시간이 길어질 수 있다. 특히 실시간 응용 프로그램에서는 이러한 지연 시간이 문제가 될 수 있으므로, 저지연 추론을 위한 최적화 기술 개발이 중요하다.
- 훈련의 복잡성: MoE 모델은 일반적인 댄스(Dense) 모델보다 훈련이 더 복잡하며, 하이퍼파라미터 튜닝이 까다로울 수 있다. 게이팅 네트워크의 학습과 로드 밸런싱, 그리고 전문가들의 협력적인 학습을 동시에 최적화하는 것은 상당한 기술적 노하우를 요구한다.
이러한 과제들을 해결하기 위한 연구가 활발히 진행되고 있으며, MoE 아키텍처의 안정성과 효율성을 더욱 높이는 방향으로 발전할 것으로 예상된다.
7. 미래 전망
MoE는 향후 AI 모델의 확장성과 효율성을 결정하는 중요한 기술로 계속 발전할 것으로 예상된다. 대규모 언어 모델의 지속적인 발전과 함께, MoE는 더욱 거대한 모델을 효율적으로 구축하고 운영하는 데 필수적인 요소로 자리매김할 것이다.
구글 딥마인드(Google DeepMind)의 PEER(Parameter Efficient Expert Retrieval)와 같이 수백만 개의 전문가로 MoE를 확장하는 새로운 아키텍처 연구가 진행 중이다. 이는 모델이 훨씬 더 방대한 지식과 전문성을 습득할 수 있도록 하여, 더욱 복잡하고 미묘한 태스크를 해결하는 데 기여할 것으로 보인다. 또한, PEER는 전문가를 동적으로 검색하고 활성화하는 방식을 통해 기존 MoE의 한계를 극복하려는 시도를 보여준다.
멀티모달(Multimodal) 및 다국어 지원 LLM의 핵심 기술로서 MoE의 활용 범위는 더욱 넓어질 것으로 전망된다. 예를 들어, 텍스트, 이미지, 오디오 등 다양한 모달리티를 동시에 처리하는 모델에서 각 모달리티나 특정 작업에 특화된 전문가를 활용함으로써 모델의 유연성과 성능을 극대화할 수 있다. 다국어 LLM에서는 각 언어에 특화된 전문가를 두어 번역, 요약, 질의응답 등 다양한 언어 관련 태스크에서 더 높은 정확도를 달성할 수 있을 것이다.
또한, MoE 모델의 훈련 및 추론 효율성을 높이기 위한 하드웨어 및 소프트웨어 최적화 연구도 지속될 것이다. 희소 활성화에 특화된 새로운 컴퓨팅 아키텍처나 프레임워크가 개발되어 MoE 모델의 잠재력을 최대한 발휘할 수 있도록 지원할 것으로 예상된다. 이는 MoE 모델의 대중화와 광범위한 응용을 가능하게 할 것이다.
궁극적으로 MoE는 AI 모델이 인간의 지능에 더 가까워지는 데 필요한 ‘전문성’과 ‘효율성’이라는 두 마리 토끼를 잡는 데 핵심적인 역할을 할 것으로 기대된다. 복잡한 문제에 대한 심층적인 이해와 동시에 자원 효율적인 운영을 가능하게 함으로써, MoE는 미래 AI 연구 및 개발의 중요한 방향을 제시하고 있다.
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
기사 제보
제보하실 내용이 있으시면 techmore.main@gmail.com으로 연락주세요.


