목차
1. 개념 정의: Nemotron이란 무엇인가?
Nemotron은 엔비디아가 AI 에이전트 시스템 개발을 위해 제공하는 개방형 모델, 데이터셋, 그리고 관련 기술들의 총체이다. 이는 개발자들이 고성능의 AI 에이전트를 투명하고 효율적으로 구축하고 배포할 수 있도록 지원하는 것을 목표로 한다. AI 에이전트는 특정 목표를 달성하기 위해 환경을 인지하고, 추론하며, 계획하고, 행동하는 자율적인 소프트웨어 또는 하드웨어 시스템을 의미한다. Nemotron은 이러한 에이전트가 복잡한 작업을 수행하고 다양한 환경에 적응할 수 있도록 설계된 기반 기술을 제공한다. 예를 들어, 고급 추론, 코딩, 시각 이해, 에이전트 작업, 안전, 음성 및 정보 검색 등 광범위한 AI 애플리케이션을 포괄한다.
Nemotron의 핵심 가치는 ‘개방성’에 있다. 엔비디아는 모델 가중치, 훈련 데이터, 훈련 레시피 등 전체 개발 스택을 공개하여 개발 커뮤니티가 모델을 심층적으로 이해하고, 맞춤화하며, 신뢰할 수 있는 시스템을 구축할 수 있도록 돕는다. 이러한 개방형 접근 방식은 AI 혁신을 가속화하고, 특정 산업이나 기업의 요구사항에 최적화된 전문화된 AI 에이전트를 개발하는 데 중요한 역할을 한다.
2. 역사 및 발전 과정
엔비디아의 AI 모델 개발 역사는 2019년 Megatron-LM 모델에서 시작되었다. Megatron-LM은 대규모 언어 모델(LLM) 훈련을 위한 선구적인 작업으로, 당시 세계 최대 규모의 트랜스포머 기반 언어 모델 중 하나였다. 이 초기 모델은 엔비디아가 자체 AI 모델 개발 역량을 구축하는 데 중요한 기반을 마련하였다.
Nemotron 브랜드는 2024년에 처음으로 선보였다. 초기 Nemotron 모델들은 Meta의 Llama 3.1과 같은 선도적인 오픈 모델을 기반으로 개발되었으며, 추론 기능을 강화하는 데 중점을 두었다. 이후 엔비디아는 다양한 크기와 특정 사용 사례에 맞춰 튜닝된 Nemotron 모델들을 지속적으로 출시하였다.
특히 2025년 12월 15일, 엔비디아는 Nemotron 3 제품군을 공개하며 에이전트 AI 개발의 새로운 지평을 열었다. Nemotron 3는 하이브리드 Mamba-Transformer MoE(Mixture-of-Experts) 아키텍처를 도입하여 효율성과 정확도를 크게 향상시켰다. 이 새로운 아키텍처는 모델 크기와 연산 비용을 분리하여 특정 시점에 필요한 매개변수만 활성화함으로써 효율성을 극대화한다. Nemotron 3 Nano 모델은 이전 Nemotron 2 Nano 대비 최대 4배 높은 처리량과 1백만 토큰의 컨텍스트 길이를 제공하며, 추론 토큰 생성을 최대 60%까지 줄여 추론 비용을 절감하는 효과를 가져왔다.
Nemotron 3의 출시는 단순한 모델 업데이트를 넘어 AI 에이전트의 성능 기준을 재정의하려는 엔비디아의 근본적인 시도로 평가받는다. 이는 특히 복잡한 다중 에이전트 시스템과 장문 컨텍스트 추론에 최적화되어, 개발자들이 실제 환경에서 신뢰할 수 있는 AI 에이전트를 구축하는 데 필요한 성능과 투명성을 제공한다.
3. 핵심 기술 및 원리
Nemotron 플랫폼은 개방형 모델, 높은 연산 효율성, 뛰어난 정확성, 그리고 안전하고 간편한 배포를 특징으로 한다. 이러한 특징들은 혁신적인 아키텍처, 다양한 모델 라인업, 개방형 훈련 환경, 그리고 포괄적인 개발 도구의 결합을 통해 구현된다.
3.1. 하이브리드 Mamba-Transformer MoE 아키텍처
Nemotron 3의 핵심은 Mamba 레이어, Transformer 레이어, 그리고 MoE(Mixture-of-Experts) 라우팅을 통합한 하이브리드 아키텍처에 있다. 이 독특한 구조는 효율적인 시퀀스 모델링과 정밀한 추론을 동시에 가능하게 한다.
- Mamba 레이어 (State Space Model, SSM): Mamba는 긴 시퀀스 데이터를 효율적으로 처리하는 데 특화된 상태 공간 모델이다. 이는 긴 컨텍스트 길이를 낮은 메모리 사용량으로 처리하며, 특히 순차적인 데이터 처리에서 뛰어난 효율성을 보인다. Nemotron 3 Nano 모델의 경우, Mamba-2 블록이 대부분의 레이어를 구성하여 긴 시퀀스에 대한 놀라운 효율성과 낮은 메모리 사용량을 제공한다.
- Transformer 레이어 (Attention): 트랜스포머의 어텐션(Attention) 레이어는 시퀀스 내의 복잡한 구조적 의존성을 포착하는 데 탁월하다. Mamba 레이어만으로는 놓칠 수 있는 전역적인 패턴이나 관계를 어텐션 레이어가 보완하여 모델의 추론 정확도를 높인다. Nemotron 3 아키텍처는 Mamba-2 블록과 어텐션 레이어를 교차 배치하여 이들의 장점을 결합한다.
- MoE (Mixture-of-Experts) 라우팅: MoE는 모델 크기와 연산 비용을 분리하는 기술이다. 기존의 피드포워드 네트워크(FFN) 레이어를 MoE 레이어로 대체하여, 특정 토큰(입력 단위)이 처리될 때 전체 매개변수 중 일부 전문가(expert)만 활성화되도록 한다. 예를 들어, Nemotron 3 Nano는 총 316억 개의 매개변수 중 약 32억 개의 매개변수만 활성화하여, 훨씬 더 큰 모델의 지능을 유지하면서도 작은 모델의 속도와 메모리 효율성을 달성한다. 이는 추론 처리량을 크게 향상시키고 추론 비용을 절감하는 데 기여한다.
이러한 하이브리드 MoE 아키텍처는 Nemotron 3 모델이 최대 1백만 토큰의 컨텍스트 길이를 지원하면서도, Nemotron 2 Nano 대비 최대 4배 높은 토큰 처리량을 제공하고 추론 토큰 사용량을 최대 60%까지 줄일 수 있게 한다. 또한, Nemotron 3 Super 및 Ultra 모델은 NVFP4와 같은 4비트 훈련 형식을 사용하여 메모리 요구 사항을 줄이고 훈련 속도를 높이며, Latent MoE와 Multi-Token Prediction(MTP)과 같은 고급 기능을 통합하여 모델 품질과 텍스트 생성 속도를 더욱 향상시킨다.
3.2. 다양한 Nemotron 모델 라인업
Nemotron은 다양한 AI 워크로드와 배포 환경에 최적화된 여러 모델 라인업을 제공한다. 주요 추론 모델은 Nano, Super, Ultra로 구분되며, 각각 특정 요구사항에 맞춰 설계되었다.
- Nemotron 3 Nano: 300억 개 이상의 총 매개변수 중 약 30억 개의 활성 매개변수를 가진 가장 작은 모델이다. PC 및 엣지 디바이스와 같은 자원 제약이 있는 환경에서 높은 정확도와 비용 효율성을 제공하도록 최적화되었다. 소프트웨어 디버깅, 콘텐츠 요약, AI 비서 워크플로우, 정보 검색 등 특정 작업에 특히 효과적이다. 현재 HuggingFace에서 사용할 수 있다.
- Nemotron 3 Super: 약 1,000억 개의 총 매개변수 중 최대 100억 개의 활성 매개변수를 가진 중간 규모 모델이다. 다중 에이전트 애플리케이션 및 높은 처리량 워크로드에 최적화되어 있으며, IT 티켓 자동화와 같은 협업 에이전트 시나리오에서 높은 정확도를 제공한다. Nano와 Ultra 사이의 추론 능력과 효율성 균형을 제공한다.
- Nemotron 3 Ultra: 약 5,000억 개의 총 매개변수 중 최대 500억 개의 활성 매개변수를 가진 가장 큰 모델이다. 복잡한 시스템과 심층적인 분석, 장기적인 계획, 전략적 의사결정을 요구하는 AI 애플리케이션을 위해 최고의 정확도와 추론 성능을 제공한다. 가장 높은 연산 요구 사항을 가지지만, 가장 까다로운 작업을 처리하도록 설계되었다.
이 외에도 Nemotron은 특정 AI 워크로드에 특화된 모델들을 포함한다.
- Nemotron Speech: 고처리량, 초저지연 자동 음성 인식(ASR), 텍스트-음성 변환(TTS), 신경망 기계 번역(NMT)을 제공하여 실시간 음성 AI 애플리케이션에 적합하다. 라이브 캡션 및 음성 비서 등에 활용된다.
- Nemotron RAG: 멀티모달(multimodal) 데이터를 활용한 문서 이해 및 정보 검색을 향상시킨다. 고품질 임베딩을 생성하고 관련 문서를 순위화하여 빠르고 정확한 문서 검색을 가능하게 한다.
- Nemotron Safety: AI 애플리케이션의 안전성과 신뢰성을 강화하는 모델이다. 다국어 콘텐츠 안전, 고급 정책 추론, 위협 인식 AI를 지원하며, 유해 콘텐츠를 감지하고 민감 데이터를 식별하는 데 사용된다.
Nemotron 3 Nano는 2025년 12월에 출시되었으며, Super와 Ultra 모델은 2026년 상반기에 출시될 예정이다.
3.3. 개방형 데이터셋 및 훈련 환경
엔비디아는 Nemotron 모델의 투명성과 맞춤화를 위해 방대한 양의 사전 훈련 및 사후 훈련 데이터셋을 공개한다. Nemotron 3 모델 훈련에는 3조 개 이상의 사전 훈련 토큰과 1,800만 개의 사후 훈련 데이터 샘플이 사용되었으며, 이는 개발자들이 모델의 동작을 이해하고 특정 도메인에 맞게 미세 조정하는 데 필수적인 자원이다.
이 데이터셋은 웹페이지, 대화, 기사 등 다양한 문서 유형을 포함하며, 법률, 수학, 과학, 금융 등 광범위한 도메인을 아우른다. 또한, 19개 언어와 43개 프로그래밍 언어로 훈련되어 다국어 및 다중 프로그래밍 언어 환경을 지원한다.
훈련 환경 측면에서는 NeMo Gym 및 NeMo RL과 같은 오픈소스 라이브러리를 통해 강화 학습 환경을 제공한다. NeMo Gym은 Nemotron 모델의 훈련 환경과 사후 훈련 기반을 제공하며, NeMo RL은 강화 학습을 통해 모델이 다양한 환경에서 적응하고 신뢰할 수 있는 실제 AI를 구축할 수 있도록 돕는다. 예를 들어, Nemotron 3 Nano는 수학, 코드, 과학, 지시 따르기, 다단계 도구 사용, 다중 턴 대화 및 구조화된 출력 환경 전반에 걸쳐 다중 환경 강화 학습을 거쳐 훈련되었다.
이러한 개방형 데이터셋과 훈련 환경은 개발자들이 Nemotron 모델을 활용하여 자체 AI 에이전트를 구축하고, 모델의 안전성과 성능을 검증하며, 규제 준수 문제를 해결하는 데 중요한 역할을 한다.
3.4. 개발 도구 및 빌딩 블록
Nemotron 기반 AI 에이전트의 구축 및 배포를 가속화하기 위해 엔비디아는 포괄적인 개발 도구 및 빌딩 블록을 제공한다. 이러한 도구들은 개발자들이 Nemotron 모델의 잠재력을 최대한 활용하고, 복잡한 AI 워크플로우를 효율적으로 관리할 수 있도록 지원한다.
- NVIDIA NeMo: AI 모델의 훈련, 사용자 정의 및 배포를 위한 포괄적인 프레임워크이다. Nemotron 모델의 훈련 및 미세 조정을 위한 기반을 제공하며, 특히 대규모 언어 모델(LLM) 및 멀티모달 모델 개발에 최적화되어 있다. NeMo는 개발자들이 Nemotron 모델을 사용하여 특정 도메인에 특화된 AI 에이전트를 구축할 수 있도록 돕는다.
- NVIDIA NIM (NVIDIA Inference Microservices): Nemotron 모델을 포함한 엔비디아 AI 모델을 쉽게 배포하고 확장할 수 있도록 하는 마이크로서비스이다. NIM은 GPU 가속 시스템 어디에서나 안전하고 확장 가능한 배포를 가능하게 하여, 개발자들이 모델을 프로덕션 환경에 신속하게 통합할 수 있도록 지원한다. Nemotron 3 Nano는 NVIDIA NIM 마이크로서비스로도 제공된다.
- NVIDIA Blueprints: AI 에이전트 시스템 구축을 위한 참조 아키텍처 및 모범 사례를 제공한다. 이는 개발자들이 복잡한 에이전트 워크플로우를 설계하고 구현하는 데 필요한 지침을 제공하여 개발 과정을 간소화한다.
- NVIDIA TensorRT-LLM: LLM의 추론 성능을 최적화하는 라이브러리이다. Nemotron 모델의 추론 속도를 극대화하고 지연 시간을 최소화하여, 실시간 애플리케이션에서 고성능을 보장한다.
또한, Nemotron 모델은 vLLM, SGLang, Ollama, llama.cpp와 같은 오픈 프레임워크를 통해 모든 엔비디아 GPU(엣지, 클라우드, 데이터센터)에 쉽게 배포할 수 있다. 이러한 광범위한 플랫폼 지원은 개발자들이 선호하는 환경에서 Nemotron을 활용할 수 있도록 한다.
4. 주요 활용 사례 및 특이한 응용 사례
Nemotron은 고급 추론, 시각 이해, 음성 처리, 검색 증강 생성(RAG), 안전 등 다양한 AI 워크로드에 걸쳐 활용되며, 특히 복잡한 에이전트 AI 시스템 구축에 강점을 보인다.
4.1. 에이전트 AI 시스템 구축
Nemotron은 자율적으로 작동하며 다단계 작업을 수행하는 특화된 AI 에이전트를 구축하는 데 핵심적인 역할을 한다.
- 보고서 생성 에이전트: Nemotron의 강력한 추론 및 정보 검색 능력은 복잡한 데이터를 분석하고 구조화된 보고서를 자동으로 생성하는 에이전트 구축에 활용될 수 있다. 이는 기업의 의사결정 과정을 가속화하고 수작업을 줄이는 데 기여한다.
- 음성 기반 RAG 에이전트: Nemotron Speech와 Nemotron RAG 모델의 결합은 음성 명령을 통해 문서나 데이터베이스에서 정보를 검색하고 요약하여 사용자에게 제공하는 에이전트를 가능하게 한다. 예를 들어, 고객 서비스 챗봇이나 음성 기반 비서 시스템에서 즉각적인 정보 제공에 사용될 수 있다.
- Bash 컴퓨터 사용 에이전트 및 소프트웨어 디버깅: Nemotron은 코딩 및 추론 능력 덕분에 Bash 명령어를 사용하여 컴퓨터를 조작하거나, 소프트웨어 코드를 분석하고 오류를 식별하여 디버깅하는 에이전트 구축에 적합하다. 이는 개발 생산성을 크게 향상시킬 수 있다.
- 콘텐츠 요약 및 AI 비서 워크플로우: 긴 문서나 대화 내용을 빠르게 요약하거나, 사용자의 질문에 답변하고 일상적인 작업을 자동화하는 AI 비서 워크플로우에 Nemotron이 활용된다. 이는 정보 과부하를 줄이고 효율적인 정보 관리를 돕는다.
- 정보 검색 및 멀티모달 질의응답: Nemotron RAG 모델은 멀티모달 데이터를 활용하여 문서, 이미지, 비디오 등 다양한 형태의 정보에서 필요한 내용을 정확하게 검색하고 질의에 답변하는 데 사용된다. 이는 특히 복잡한 기술 문서나 시각적 정보가 포함된 자료에서 유용하다.
이러한 에이전트 AI 시스템은 단일 모델 챗봇을 넘어 협력적인 다중 에이전트 환경으로 전환되는 AI 산업의 현재 동향을 반영하며, Nemotron은 이러한 전환을 가속화하는 데 필수적인 기반을 제공한다.
4.2. 멀티모달 및 저지연 애플리케이션
Nemotron은 특히 멀티모달 데이터 처리와 실시간, 저지연 애플리케이션에서 뛰어난 성능을 발휘한다.
- 실시간 음성 인식 및 번역: Nemotron Speech 모델은 고처리량 및 초저지연 자동 음성 인식(ASR) 기능을 제공하여 라이브 캡션, 실시간 회의록 작성, 음성 명령 기반 시스템 등 실시간 음성 AI 애플리케이션에 매우 적합하다. 이 모델은 동급 모델 대비 10배 빠른 성능을 제공하는 것으로 나타났다.
- 비디오 이해 및 문서 지능: Nemotron Nano 2 VL과 같은 모델은 비디오 이해 및 문서 지능을 위해 설계된 120억 매개변수의 오픈 멀티모달 추론 모델이다. 하이브리드 트랜스포머-맘바 아키텍처를 도입하여 트랜스포머 수준의 정확도와 맘바의 메모리 효율적인 시퀀스 모델링을 결합하여 처리량과 지연 시간을 크게 향상시킨다. 이는 광학 문자 인식(OCR), 차트 추론, 멀티모달 이해에 최적화된 고품질 합성 데이터셋으로 훈련되었다.
- 멀티모달 RAG를 통한 정보 검색: Nemotron RAG 모델은 멀티모달 데이터를 활용하여 문서 검색 및 정보 검색을 향상시킨다. 이는 텍스트뿐만 아니라 이미지, 차트, 다이어그램 등 시각적 콘텐츠를 상관 분석하여 지능적인 질의응답을 가능하게 한다. 예를 들어, 대규모 코드베이스나 장문의 문서를 분석하는 데 1백만 토큰 컨텍스트 윈도우를 활용하여 높은 정확도로 정보를 추출할 수 있다.
이러한 기능들은 Nemotron이 단순히 텍스트 기반의 작업을 넘어, 실제 세계의 복잡한 멀티모달 데이터를 실시간으로 처리하고 이해하는 데 필수적인 솔루션을 제공함을 보여준다.
5. 현재 동향
Nemotron은 개방형 AI 생태계를 강화하고 에이전트 AI 개발의 새로운 표준을 제시하며 AI 산업 전반에 걸쳐 중요한 영향을 미치고 있다.
5.1. 개방형 혁신 및 투명성 강조
엔비디아는 Nemotron을 통해 AI 혁신의 투명성을 높이는 데 주력하고 있다. 모델 가중치, 훈련 데이터, 훈련 레시피 등 전체 개발 스택을 공개하는 것은 개발자들이 AI 모델을 더 깊이 이해하고 맞춤화하며, 궁극적으로 신뢰할 수 있는 시스템을 구축하는 데 기여한다.
젠슨 황 엔비디아 CEO는 “개방형 혁신은 AI 발전의 기반”이라고 강조하며, Nemotron이 고급 AI를 개발자들이 에이전트 시스템을 대규모로 구축하는 데 필요한 투명성과 효율성을 제공하는 개방형 플랫폼으로 전환하고 있다고 밝혔다. 이러한 투명성은 모델의 편향이나 법적 문제 등 잠재적인 위험을 감사하고 관리하는 데 도움을 주며, 특히 규제가 엄격한 산업에서 AI 시스템의 신뢰성을 확보하는 데 필수적이다.
또한, Nemotron은 한국을 포함한 여러 국가에서 자체 데이터, 규제 및 가치에 부합하는 AI 시스템을 구축할 수 있도록 지원하는 엔비디아의 주권 AI(Sovereign AI) 노력의 일환이다. 이는 각국의 고유한 요구사항에 맞는 AI 개발을 촉진한다.
5.2. 에이전트 AI 및 전문화된 AI 시스템으로의 전환
AI 산업은 단일 모델 챗봇에서 벗어나 협력적인 다중 에이전트 AI 시스템으로 전환되고 있다. 이러한 에이전트 AI 시스템은 추론, 계획, 행동을 통해 복잡한 작업을 자율적으로 수행하며, 여러 AI 모델이 협력하여 더 큰 목표를 달성한다.
Nemotron은 이러한 에이전트 AI 시스템 구축에 필수적인 효율적이고 정확한 모델을 제공한다. 특히, 다중 에이전트 시스템에서 발생하는 통신 오버헤드, 컨텍스트 드리프트, 높은 추론 비용과 같은 문제들을 Nemotron 3의 하이브리드 MoE 아키텍처와 1백만 토큰 컨텍스트 길이가 해결하는 데 기여한다. Nemotron 3 Nano는 다중 에이전트 시스템에서 초당 가장 많은 토큰을 처리하여 에이전트가 더 많은 것을 기억하고 여러 단계를 수행할 수 있도록 돕는다.
또한, Nemotron은 기업들이 자체적인 전문 지식과 결합된 맞춤형 아키텍처를 통해 특정 워크플로우의 정밀도를 높이고 성능을 향상시키는 데 기여한다. 이는 사이버 보안, 결제, 반도체 엔지니어링 등 다양한 산업에서 전문화된 에이전트가 진정한 운영 가치를 창출하는 길을 열고 있다.
5.3. 산업 전반의 채택
Nemotron 모델은 제조, 사이버 보안, 소프트웨어 개발, 미디어, 통신 등 여러 산업 분야에서 AI 워크플로우를 강화하기 위해 광범위하게 채택되고 있다.
주요 채택 기업으로는 Accenture, Cadence, CrowdStrike, ServiceNow, Siemens, Zoom 등이 있다.
- Accenture: 엔비디아 모델을 활용하여 산업 맞춤형 에이전트 솔루션을 개발하고 있다.
- Cadence: Nemotron RAG 모델을 시험 적용하여 복잡한 기술 문서 검색 및 추론을 개선하고 있다.
- CrowdStrike: Nemotron 및 NVIDIA NIM 마이크로서비스를 활용하여 Charlotte AI 플랫폼을 강화하고, 대량의 알림 분류 및 문제 해결과 같은 작업을 처리하는 전문 보안 에이전트를 구축하여 정확도를 80%에서 98.5%로 높였다.
- ServiceNow: 엔비디아와 협력하여 실시간 워크플로우 실행에 특화된 Apriel Nemotron 15B 모델을 개발했으며, Nemotron 모델을 활용하여 AI 에이전트의 성능과 정확도를 높여 기업 생산성을 향상시키고 있다.
- Siemens: Nemotron 모델을 활용하여 제조 분야의 AI 워크플로우를 강화하고 있다.
- Zoom: Nemotron 모델을 자사의 서비스에 통합하여 AI 기능을 강화하고 있다.
- Palantir: Nemotron 모델을 Ontology 프레임워크에 통합하여 전문 AI 에이전트를 위한 통합 기술 스택을 구축하고 있다.
- Bosch: Nemotron Speech를 채택하여 운전자가 차량과 상호 작용할 수 있도록 지원한다.
이러한 광범위한 채택은 Nemotron이 기업들이 AI 에이전트 전략을 신속하게 실행하고, 다양한 산업 분야에서 실질적인 비즈니스 가치를 창출하는 데 핵심적인 역할을 하고 있음을 보여준다.
6. 미래 전망
Nemotron은 AI 에이전트 시스템의 발전과 광범위한 산업 적용을 가속화하며, AI 기술의 미래를 형성하는 데 중요한 역할을 할 것으로 기대된다.
6.1. 지속적인 효율성 및 성능 향상
Nemotron 3 Super 및 Ultra 모델은 향후 Latent MoE 및 Multi-Token Prediction(MTP)과 같은 고급 기능을 통합하여 정확성과 추론 처리량을 더욱 향상시킬 예정이다. Latent MoE는 모델 품질을 개선하는 새로운 접근 방식이며, MTP 레이어는 텍스트 생성 속도를 가속화한다.
엔비디아는 Nemotron 모델의 효율성을 지속적으로 최적화하여, 더 적은 컴퓨팅 자원으로도 높은 성능을 달성할 수 있도록 할 계획이다. 이는 AI 에이전트가 더 빠르고 정확하게 “생각”하고 응답을 생성하여 추론 비용을 더욱 낮추는 데 기여할 것이다.
또한, 엔비디아는 Nemotron 모델을 NVIDIA Blackwell 아키텍처와 같은 최신 하드웨어에 최적화하여, 메모리 요구 사항을 크게 줄이고 훈련 및 추론 속도를 극대화할 것이다. 이러한 하드웨어-소프트웨어 통합은 Nemotron의 성능 한계를 더욱 확장할 것으로 예상된다.
6.2. AI 에이전트 개발의 대중화
엔비디아는 Nemotron을 통해 고급 AI 기능을 더 많은 개발자와 기업이 접근할 수 있도록 하여, AI 에이전트 개발의 민주화를 이끌 것으로 예상된다. 개방형 모델과 포괄적인 개발 스택(오픈 가중치, 훈련 데이터, 레시피)은 AI 혁신을 가속화하고 새로운 애플리케이션의 등장을 촉진할 것이다.
스타트업과 소규모 기업들도 Nemotron을 활용하여 AI 에이전트를 신속하게 구축하고 반복 개발할 수 있으며, 이는 프로토타입에서 엔터프라이즈 배포에 이르는 혁신을 가속화할 것이다. Nemotron은 로컬 PC부터 대규모 GPU 클러스터에 이르기까지 다양한 환경에서 실행 가능하며, GitHub, Hugging Face, OpenRouter와 같은 플랫폼을 통해 개발자에게 제공되어 진입 장벽을 낮춘다.
이러한 대중화는 AI 에이전트가 다양한 산업과 일상생활에 더욱 깊이 통합되는 계기가 될 것이며, 인간-AI 협업을 지원하는 새로운 AI 동료(AI teammates)의 등장을 촉진할 것이다.
6.3. 윤리적 고려 및 안전한 AI 구축
Nemotron은 에이전트 AI 시스템의 안전성을 강화하기 위한 Nemotron Agentic Safety Dataset과 같은 도구를 제공하며, 이는 미래 AI 시스템의 윤리적이고 책임감 있는 개발에 중요한 역할을 할 것이다.
Nemotron-AIQ Agentic Safety Dataset 1.0은 에이전트 시스템 내에서 발생할 수 있는 광범위한 안전 및 보안 위험을 포착하는 포괄적인 데이터셋으로, 공격 및 방어 시뮬레이션 중 에이전트 동작에 대한 10,000개 이상의 상세 추적 기록을 포함한다. 이 데이터셋은 개발 커뮤니티가 에이전트 AI의 강력한 안전 조치를 연구하고 개발하는 데 귀중한 도구를 제공한다.
엔비디아는 모델의 투명한 데이터셋과 도구를 제공함으로써, 팀이 운영 경계를 정의하고, 특정 작업에 맞게 모델을 훈련하며, 배포 전에 신뢰성을 보다 엄격하게 평가할 수 있도록 돕는다. 이는 AI 시스템이 비즈니스 프로세스에 더 많이 통합됨에 따라, 그들의 행동이 안전 및 보안 정책과 일치하도록 보장하는 데 중요하다.
Nemotron은 AI 에이전트가 복잡한 워크플로우를 자동화하는 데 필요한 성능과 개방성을 제공하는 동시에, 잠재적인 위험을 식별하고 완화하기 위한 프레임워크를 제시하며 윤리적이고 신뢰할 수 있는 AI의 미래를 위한 기반을 다지고 있다.
참고 문헌
- Foundation Models for Agentic AI | NVIDIA Nemotron. https://www.nvidia.com/en-us/ai-data-science/foundation-models/nemotron/
- Nvidia Launches the Next Generation of Its Nemotron Models – The New Stack. (2025-12-15). https://thenewstack.io/nvidia-launches-the-next-generation-of-its-nemotron-models/
- NVIDIA Nemotron 3: Efficient and Open Intelligence. (2025-12-15). https://research.nvidia.com/labs/nemotron/files/NVIDIA-Nemotron-3-White-Paper.pdf
- NVIDIA AI Releases Nemotron 3: A Hybrid Mamba Transformer MoE Stack for Long Context Agentic AI – MarkTechPost. (2025-12-20). https://www.marktechpost.com/2025/12/20/nvidia-ai-releases-nemotron-3-a-hybrid-mamba-transformer-moe-stack-for-long-context-agentic-ai/
- nvidia/NVIDIA-Nemotron-3-Nano-30B-A3B-BF16 – Hugging Face. https://huggingface.co/nvidia/NVIDIA-Nemotron-3-Nano-30B-A3B-BF16
- NVIDIA Nemotron AI Models – NVIDIA Developer. https://developer.nvidia.com/nemotron
- NVIDIA Debuts Nemotron 3 Family of Open Models. (2025-12-15). https://nvidianews.nvidia.com/news/nvidia-debuts-nemotron-3-family-of-open-models
- Nvidia launches Nemotron 3 open models as open foundation for agentic AI systems. (2025-12-15). https://siliconangle.com/2025/12/15/nvidia-launches-nemotron-3-open-models-open-foundation-agentic-ai-systems/
- Nvidia Nemotron 3 Nano: Everything You Need to Know – eWeek. (2025-12-15). https://www.eweek.com/ai/nvidia-nemotron-3-nano-everything-you-need-to-know/
- Nemotron 3: Open Innovation Drives Transparent AI Development – AI CERTs News. https://aicerts.io/blog/nemotron-3-open-innovation-drives-transparent-ai-development
- Inside NVIDIA’s Nemotron-3: Mamba + Transformer + MoE and 1M Token Context – Medium. (2025-12-18). https://medium.com/@aigents/inside-nvidias-nemotron-3-mamba-transformer-moe-and-1m-token-context-8b3d0a2732c2
- NVIDIA Nemotron 3: Hybrid Mamba-Transformer Architecture Analysis. Mixture-of-Experts (MoE) – YouTube. (2025-12-20). https://www.youtube.com/watch?v=Fj-y5w9w2uQ
- NVIDIA launches Nemotron 3 open models in Nano, Super, and Ultra sizes for advanced agentic AI – DEV Community. (2025-12-16). https://dev.to/nvidia/nvidia-launches-nemotron-3-open-models-in-nano-super-and-ultra-sizes-for-advanced-agentic-ai-4l38
- NVIDIA Launches Nemotron 3 Open Models for Agentic AI | Pipeline Publishing. (2025-12-15). https://pipelinepub.com/nvidia-launches-nemotron-3-open-models-for-agentic-ai/
- Nemotron 3 Nano: Open, Efficient Mixture-of-Experts Hybrid Mamba-Transformer Model for Agentic Reasoning – Research at NVIDIA. (2025-12-15). https://research.nvidia.com/labs/nemotron/files/NVIDIA-Nemotron-3-Nano-Technical-Report.pdf
- NVIDIA unveils Nemotron 3, an open AI model built for multi-agent systems – Ynetnews. (2025-12-16). https://www.ynetnews.com/tech/article/rk8p00r7r
- NVIDIA and Lakera AI Propose Unified Framework for Agentic System Safety. (2025-12-08). https://www.unite.ai/nvidia-and-lakera-ai-propose-unified-framework-for-agentic-system-safety/
- NVIDIA Debuts Nemotron 3 Family of Open Models – NVIDIA Investor Relations. (2025-12-15). https://investor.nvidia.com/news/press-release-details/2025/NVIDIA-Debuts-Nemotron-3-Family-of-Open-Models/default.aspx
- NVIDIA Unveils New Open Models, Data and Tools to Advance AI Across Every Industry. (2026-01-05). https://nvidianews.nvidia.com/news/nvidia-unveils-new-open-models-data-and-tools-to-advance-ai-across-every-industry
- 3 LLM Underdogs of 2025 – DEV Community. (2026-01-08). https://dev.to/karthik_ram/3-llm-underdogs-of-2025-337j
- nvidia/Nemotron-AIQ-Agentic-Safety-Dataset-1.0 – Hugging Face. (2025-10-29). https://huggingface.co/datasets/nvidia/Nemotron-AIQ-Agentic-Safety-Dataset-1.0
- NVIDIA Introduces an Efficient Family of Open Models for Building Agentic AI Applications. (2025-12-16). https://www.enterpriseai.news/2025/12/16/nvidia-introduces-an-efficient-family-of-open-models-for-building-agentic-ai-applications/
- A Safety and Security Framework for Real-World Agentic Systems – arXiv. (2025-11-27). https://arxiv.org/pdf/2511.08272
- Nemotron 3: Architecture, Benchmarks, and Open-Model Comparisons – DataCamp. (2025-12-23). https://www.datacamp.com/blog/nemotron-3-architecture-benchmarks-and-open-model-comparisons
- NVIDIA Opens Nemotron AI Models for Commercial Use | The Tech Buzz. (2025-09-24). https://thetech.buzz/nvidia-opens-nemotron-ai-models-for-commercial-use/
- Nemotron Models, Datasets and Techniques Fuel AI Development – NVIDIA Blog. (2025-09-24). https://blogs.nvidia.com/blog/nemotron-models-datasets-techniques-ai-development/
- Nemotron Nano 12B 2 VL (free) – API, Providers, Stats | OpenRouter. (2025-10-28). https://openrouter.ai/models/nvidia/nemotron-nano-12b-v2-vl
- Nvidia Releases Nemotron 3 Open Models – AI Business. (2025-12-15). https://aibusiness.com/llm/nvidia-releases-nemotron-3-open-models
- NVIDIA Nemotron 3 expands open models for agentic AI – StrongYes. (2025-12-16). https://strongyes.ai/nvidia-nemotron-3-expands-open-models-for-agentic-ai/
- NVIDIA AI Released Nemotron Speech ASR: A New Open Source Transcription Model Designed from the Ground Up for Low-Latency Use Cases like Voice Agents – MarkTechPost. (2026-01-06). https://www.marktechpost.com/2026/01/06/nvidia-ai-released-nemotron-speech-asr-a-new-open-source-transcription-model-designed-from-the-ground-up-for-low-latency-use-cases-like-voice-agents/
- Building in the Open: The Future of Open Model Innovation | Nemotron Labs – YouTube. (2025-12-09). https://www.youtube.com/watch?v=Fj-y5w9w2uQ
- Nvidia launches models to ease AI agent development – CIO Dive. (2025-03-19). https://www.ciodive.com/news/nvidia-llama-nemotron-ai-agent-development/710609/
- NVIDIA powers a new wave of specialised AI agents to transform business. (2025-11-25). https://www.itpro.com/business/ai-and-machine-learning/369796/nvidia-powers-new-wave-of-specialised-ai-agents-to-transform-business
- Huang Lays Out NVIDIA’s Plan for the Physical AI Era at CES 2026 | The Tech Buzz. (2026-01-06). https://thetech.buzz/huang-lays-out-nvidias-plan-for-the-physical-ai-era-at-ces-2026/
- NVIDIA Debuts Nemotron 3 Family of Open Models – Barchart.com. (2025-12-15). https://www.barchart.com/story/news/24719266/nvidia-debuts-nemotron-3-family-of-open-models
- NVIDIA Launches Family of Open Reasoning AI Models for Developers and Enterprises to Build Agentic AI Platforms. (2025-03-18). https://nvidianews.nvidia.com/news/nvidia-launches-family-of-open-reasoning-ai-models-for-developers-and-enterprises-to-build-agentic-ai-platforms
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
기사 제보
제보하실 내용이 있으시면 techmore.main@gmail.com으로 연락주세요.


