Rubin 마이크로아키텍처: 차세대 AI 및 HPC 컴퓨팅의 혁신
NVIDIA의 Rubin 마이크로아키텍처는 인공지능(AI) 및 고성능 컴퓨팅(HPC) 분야의 새로운 지평을 열 차세대 GPU 플랫폼이다. 천문학자 베라 루빈(Vera Rubin)의 이름을 딴 이 아키텍처는 기존 GPU의 한계를 뛰어넘어 AI 슈퍼컴퓨터와 데이터센터의 효율성 및 성능을 극대화하는 데 중점을 두고 개발되었다.
목차
- 1. Rubin 마이크로아키텍처란 무엇인가?
- 2. Rubin의 역사 및 발전 과정
- 3. Rubin의 핵심 기술 및 원리
- 4. 주요 활용 사례 및 응용 분야
- 5. 현재 동향 및 시장 반응
- 6. Rubin 마이크로아키텍처의 미래 전망
1. Rubin 마이크로아키텍처란 무엇인가?
Rubin 마이크로아키텍처는 NVIDIA가 개발한 차세대 GPU 아키텍처로, 특히 AI 및 고성능 컴퓨팅(HPC) 워크로드에 최적화된 통합 플랫폼이다. 이는 단순한 GPU 업그레이션을 넘어, 새로운 메모리, 패키징, 인터커넥트, 그리고 시스템 수준의 혁신을 포함하는 광범위한 플랫폼 재설계를 의미한다.
1.1. 개념 정의
Rubin은 NVIDIA의 차세대 GPU 마이크로아키텍처의 코드명이다. 이는 데이터센터 및 AI 분야에서 현재의 Blackwell 세대를 잇는 후속작으로, 베라 루빈(Vera Rubin)이라는 이름의 플랫폼 일부로 구성된다. 이 플랫폼은 Rubin GPU와 새로운 Vera CPU를 결합하여 대규모 AI 및 HPC 작업을 처리하도록 설계되었다. Rubin GPU는 50페타플롭스(PetaFLOPS)의 NVFP4 추론 성능을 제공하며, 이는 이전 Blackwell 세대보다 5배 빠른 속도이다. 또한, 18432개의 쉐이딩 유닛, 576개의 텍스처 매핑 유닛, 24개의 ROP, 그리고 머신러닝 애플리케이션 속도 향상에 기여하는 576개의 텐서 코어를 특징으로 한다.
1.2. 개발 배경 및 목적
Rubin은 AI 컴퓨팅 수요가 폭발적으로 증가하는 시점에 맞춰 개발되었다. 특히 대규모 언어 모델(LLM)의 훈련 및 추론 비용을 절감하고, 에이전트 AI(Agentic AI) 및 대규모 혼합 전문가(MoE) 모델과 같은 복잡한 AI 워크로드를 효율적으로 처리하기 위해 설계되었다. NVIDIA는 Rubin을 통해 AI 데이터센터를 위한 “AI 팩토리(AI Factory)” 개념을 구현하며, 전력, 실리콘, 데이터를 지능으로 지속적으로 전환하는 상시 작동 지능 생산 시스템을 목표로 한다. 이는 기존 데이터센터와는 근본적으로 다른 접근 방식으로, 추론, 컨텍스트 처리, 데이터 처리의 효율성을 극대화하여 AI 인프라의 총 소유 비용(TCO)을 절감하는 것을 목적으로 한다.
2. Rubin의 역사 및 발전 과정
NVIDIA는 매년 새로운 AI 슈퍼컴퓨터 세대를 출시하는 연간 로드맵을 가지고 있으며, Rubin은 이러한 로드맵의 중요한 이정표이다. 이전 세대 아키텍처의 혁신을 계승하면서도, AI 및 HPC의 진화하는 요구사항을 충족하기 위한 근본적인 변화를 담고 있다.
2.1. 이전 세대 아키텍처와의 비교
Rubin은 NVIDIA의 Hopper 및 Blackwell 아키텍처의 뒤를 잇는 차세대 플랫폼이다. 특히 Blackwell 대비 여러 면에서 상당한 발전을 이루었다. 예를 들어, AI 훈련 성능은 3.5배, AI 추론 성능은 5배 빨라졌으며, 추론 토큰당 비용은 최대 10배 절감된다. 또한, MoE 모델 훈련에 필요한 GPU 수를 4분의 1로 줄일 수 있다. 이는 Blackwell이 TSMC의 4나노미터(nm) 공정을 사용한 반면, Rubin은 TSMC의 3나노미터(nm) 공정으로 제조되어 더 높은 집적도와 전력 효율성을 달성하기 때문이다. 메모리 측면에서도 Blackwell의 HBM3/HBM3e에서 HBM4로 전환하여 대역폭이 크게 향상되었다.
2.2. 개발 및 공개 타임라인
NVIDIA는 GTC 2025 컨퍼런스에서 2026년 및 2027년 데이터센터 로드맵을 업데이트하며 Rubin 및 Rubin Ultra의 계획을 공개했다. Rubin 마이크로아키텍처는 2026년 1월 CES 2026에서 공식적으로 공개되었으며, 2026년 하반기부터 파트너들에게 제품이 제공될 예정이다. Rubin 칩은 2026년 하반기에 양산에 들어갈 것으로 예상된다.
3. Rubin의 핵심 기술 및 원리
Rubin 마이크로아키텍처는 단순한 GPU의 성능 향상을 넘어, 시스템 전체의 통합과 효율성을 극대화하는 데 초점을 맞춘다. 이는 여러 핵심 기술과 원리가 유기적으로 결합된 결과이다.
3.1. 주요 변경점 및 개선 사항
Rubin 플랫폼은 6개의 새로운 칩으로 구성된 ‘익스트림 공동 설계(extreme co-design)’ 접근 방식을 채택한다. 이 6가지 핵심 칩은 NVIDIA Vera CPU, NVIDIA Rubin GPU, NVIDIA NVLink 6 스위치, NVIDIA ConnectX-9 SuperNIC, NVIDIA BlueField-4 DPU, 그리고 NVIDIA Spectrum-6 이더넷 스위치이다. 이들은 개별적으로 최적화되는 것이 아니라, 하나의 AI 슈퍼컴퓨터로서 함께 작동하도록 설계되었다. 특히 Rubin GPU는 HBM4 메모리를 채택하여 메모리 대역폭을 Blackwell 대비 거의 3배 가까이 늘렸으며, GPU당 최대 288GB의 HBM4를 제공한다. 또한, 새로운 메모리 컨트롤러와 컴퓨팅-메모리 통합을 통해 대역폭은 최대 22TB/s에 달한다. Vera CPU는 88개의 커스텀 Arm 코어(Olympus 코어)를 탑재하여 AI 팩토리의 추론 및 데이터 이동 워크로드에 최적화되었다. NVLink는 6세대로 진화하여 GPU 간, CPU 간, 랙 간 고속 상호 연결을 지원하며, 랙당 수백 테라바이트/초 또는 심지어 페타바이트/초의 대역폭을 목표로 한다. 특히 Vera Rubin NVL72 시스템은 72개의 Rubin GPU와 36개의 Vera CPU를 단일 랙에 통합하여 총 260TB/s의 대역폭을 제공한다. 또한, 실리콘 포토닉스 프로세서를 통합하여 랙 또는 데이터센터 규모에서 광학 인터커넥트를 지원한다.
3.2. 성능 최적화 기술
Rubin은 AI 학습 및 추론, HPC 작업에 최적화된 다양한 성능 향상 기술을 포함한다. 3세대 트랜스포머 엔진(Transformer Engine)은 하드웨어 가속 적응형 압축 기능을 통해 NVFP4 성능을 향상시키면서도 정확도를 유지하며, 추론을 위해 최대 50페타플롭스의 NVFP4 성능을 제공한다. 이는 Blackwell GPU와 완벽하게 호환되어 기존에 최적화된 코드가 Rubin으로 원활하게 전환될 수 있도록 한다. 또한, 2세대 RAS(Reliability, Availability, Serviceability) 엔진은 사전 예방적 유지보수 및 실시간 상태 점검을 가동 중단 없이 수행하여 시스템의 신뢰성을 높인다. 3세대 기밀 컴퓨팅(Confidential Computing)은 Vera Rubin NVL72 랙 규모 시스템에서 전체 랙 규모의 보안을 확장하여 CPU, GPU, NVLink 도메인 전반에 걸쳐 데이터 보안을 유지한다.
3.3. Rubin Ultra의 특징
Rubin Ultra는 Rubin 아키텍처의 고성능 변형으로, 초기 Rubin 배포 이후에 출시될 예정이다. Rubin Ultra 시스템은 더 많은 GPU, 더 큰 메모리, 그리고 차세대 NVLink를 특징으로 하는 대규모 랙 구성을 목표로 하며, Microsoft의 Fairwater와 같은 AI “슈퍼팩토리”를 위해 포지셔닝된다. Rubin Ultra는 Rubin의 50페타플롭스 FP4 성능을 두 배로 늘린 100페타플롭스를 제공할 것으로 예상된다. 또한, HBM4e 메모리를 사용하여 더 높은 대역폭을 제공하며, NVLink 7 인터페이스는 Rubin 대비 6배 더 빠른 1.5PB/s의 처리량을 가질 것으로 전망된다. Rubin Ultra NVL576은 576개의 GPU를 단일 랙에 통합하며, 365TB의 빠른 메모리를 제공할 것으로 예상된다.
4. 주요 활용 사례 및 응용 분야
Rubin 마이크로아키텍처는 주로 AI 슈퍼컴퓨터 및 데이터센터 시장을 겨냥하며, 다양한 고성능 컴퓨팅 분야에서 혁신적인 응용 가능성을 제시한다.
4.1. AI 슈퍼컴퓨터 및 데이터센터
Rubin 기반의 AI 슈퍼컴퓨터 및 데이터센터 플랫폼은 대규모 AI 모델 훈련 및 추론에 필수적인 역할을 한다. 특히 Mixture-of-Experts (MoE) 모델과 에이전트 기반 추론(agent-based inference)과 같이 복잡하고 자원 집약적인 AI 워크로드에 최적화되어 있다. NVIDIA는 Rubin 플랫폼을 통해 “AI 팩토리”를 구축하여 기업과 연구 기관이 대규모 AI를 확장하면서 컴퓨팅 비용을 절감할 수 있도록 지원한다. Microsoft Azure, AWS, Google Cloud, CoreWeave 등 주요 클라우드 서비스 제공업체들이 Rubin 시스템을 배포할 예정이다. Rubin은 추론 토큰당 비용을 최대 10배 절감하고, MoE 모델 훈련에 필요한 GPU 수를 4배 줄여 AI 도입을 가속화할 것으로 기대된다. 또한, Vera Rubin NVL72와 같은 랙 스케일 솔루션은 전체 랙이 하나의 가속기처럼 작동하도록 설계되어, 예측 가능한 지연 시간, 이기종 실행 단계 전반에 걸친 높은 활용률, 전력을 사용 가능한 지능으로 효율적으로 전환하는 데 최적화되어 있다.
4.2. 기타 고성능 컴퓨팅 분야
AI 외에도 Rubin은 과학 연구, 시뮬레이션 등 다양한 고성능 컴퓨팅(HPC) 분야에서 활용될 가능성이 크다. 예를 들어, 기후 모델링, 신약 개발, 자율 시스템과 같은 분야에서 엑사스케일(exascale) 컴퓨팅을 가능하게 하여 과학적 발견을 가속화할 수 있다. Rubin GPU는 FP64 벡터 처리량 증가보다는 아키텍처 및 시스템 수준 개선을 통해 HPC 시뮬레이션 코드에서 성능 향상을 제공할 것으로 예상된다. 또한, Rubin CPX와 같은 특정 변형은 비디오 검색 및 고품질 생성형 비디오와 같은 장문 컨텍스트 애플리케이션에 최적화되어, 최대 100만 토큰의 비디오 콘텐츠를 처리할 수 있는 전례 없는 기능을 제공한다. 이는 AI 코딩 어시스턴트를 대규모 소프트웨어 프로젝트를 이해하고 최적화할 수 있는 정교한 시스템으로 변화시키는 데 기여할 수 있다.
5. 현재 동향 및 시장 반응
Rubin 마이크로아키텍처의 공개는 AI 및 HPC 시장에 큰 반향을 일으키고 있으며, 업계는 Rubin이 가져올 변화에 대한 높은 기대감을 표명하고 있다.
5.1. 업계의 기대와 전망
NVIDIA의 창립자이자 CEO인 젠슨 황(Jensen Huang)은 Rubin이 “AI 산업 혁명의 기반”이자 “AI를 위한 로켓 엔진”이 될 것이라고 언급하며, AI 컴퓨팅의 다음 단계를 위한 중요한 도약임을 강조했다. 일론 머스크(Elon Musk) 또한 Rubin이 AI를 위한 “로켓 엔진”이 될 것이라고 평가하며, NVIDIA를 인프라 분야의 “골드 스탠다드”라고 칭했다. Rubin은 AI 모델의 추론 비용을 획기적으로 낮추고, 훈련 효율성을 높여 AI의 주류 채택을 가속화할 것으로 예상된다. 이는 임베디드 지능 및 상시 작동 에이전트를 다양한 산업 분야에서 보편화하는 데 기여할 것이다. 또한, Rubin은 전력 밀도, 냉각 요구사항, AI 인프라 비용을 줄이는 효율성 혁신을 제공하여 데이터센터 운영자들이 직면한 문제 해결에 기여할 것으로 기대된다.
5.2. 경쟁사 동향
NVIDIA는 데이터센터 GPU 및 AI 가속기 시장에서 여전히 90%에 달하는 지배적인 점유율을 유지하고 있지만, 최근 몇 년 동안 경쟁사들이 시장 점유율을 조금씩 잠식하고 있다. AMD는 최근 새로운 데이터센터 제품을 출시하며 NVIDIA와의 경쟁을 심화하고 있다. 또한, Intel, Apple, Qualcomm 등도 Arm 기반 CPU를 포함한 자체 아키텍처를 개발하며 AI 및 HPC 시장에서 경쟁 구도를 형성하고 있다. Rubin은 이러한 경쟁 환경 속에서 NVIDIA의 선두 위치를 더욱 공고히 하고, AI 데이터센터 비즈니스에서 지배적인 입지를 강화하기 위한 전략적 제품이다.
6. Rubin 마이크로아키텍처의 미래 전망
Rubin 마이크로아키텍처는 AI 및 컴퓨팅 분야의 미래를 형성하는 데 중추적인 역할을 할 것으로 기대된다. 그 영향은 기술 발전뿐만 아니라 산업 전반의 변화로 이어질 것이다.
6.1. AI 기술 발전 기여
Rubin은 에이전트 AI 및 추론 시대에 맞춰 설계되었으며, 다단계 문제 해결 및 대규모 장문 컨텍스트 워크플로우를 대규모로 처리하는 데 특화되어 있다. 이는 AI 모델이 더욱 복잡하고 정교한 추론 능력을 갖추도록 돕고, 인간과 유사한 지능을 가진 AI 시스템 개발을 가속화할 것이다. 특히 추론의 병목 현상을 제거하고, 토큰당 비용을 절감함으로써 AI 애플리케이션의 개발 및 배포를 더욱 경제적으로 만들고, AI의 대중화를 촉진할 것이다. 또한, Rubin은 NVIDIA의 차세대 GPU와 CPU, 네트워킹 기술을 통합하여 AI 연구자들이 이전에는 불가능했던 규모의 실험과 모델을 탐구할 수 있는 기반을 제공할 것이다.
6.2. 차세대 컴퓨팅 환경의 변화
Rubin은 개별 칩 중심의 컴퓨팅에서 랙 스케일(rack-scale) 시스템 중심의 컴퓨팅으로의 전환을 주도한다. 이는 데이터센터를 단일 컴퓨팅 단위로 취급하여 성능과 효율성이 실제 운영 환경에서 유지되도록 보장한다. 모듈식의 케이블 없는 트레이 설계, 지능형 복원력, 소프트웨어 정의 NVLink 라우팅과 같은 혁신은 데이터센터의 조립 및 서비스 용이성을 크게 향상시키고 유지보수 오버헤드를 줄일 것이다. 또한, Rubin 플랫폼은 45°C 액체 냉각 시스템을 사용하여 고가의 냉각 장비 없이도 효율적인 냉각을 가능하게 하여, 데이터센터의 운영 비용을 절감하고 지속 가능한 AI 인프라 구축에 기여한다. 이러한 변화는 AI 팩토리의 확장을 가속화하고, 미래의 수백만 GPU 환경을 위한 길을 열어줄 것으로 기대된다.
참고 문헌
- TechPowerUp. NVIDIA Rubin GPU Specs. (접근일: 2026년 2월 5일).
- YouTube. NVIDIA’s Rubin Architecture Revealed 2026. (2025년 10월 28일).
- Varindia. Nvidia unveils Rubin – its new AI supercomputing platform. (2026년 1월 7일).
- NVIDIA. Inside the NVIDIA Rubin Platform: Six New Chips, One AI Supercomputer. (2026년 1월 5일).
- Wandb. Exploring NVIDIA Rubin: The future of AI supercomputing | genai-research. (2026년 1월 6일).
- NVIDIA. Infrastructure for Scalable AI Reasoning | NVIDIA Rubin Platform. (접근일: 2026년 2월 5일).
- NVIDIA. NVIDIA Unveils Rubin Platform: A Leap Forward in AI Supercomputing Architecture. (2026년 1월 6일).
- HPCwire. NVIDIA Unveils Rubin CPX: A New Class of GPU Designed for Massive-Context Inference. (2025년 9월 9일).
- HPCwire. Nvidia Unleashes Rubin on the AI Data Center Market. (접근일: 2026년 2월 5일).
- NVIDIA. NVIDIA Unveils Rubin CPX: A New Class of GPU Designed for Massive-Context Inference. (2025년 9월 9일).
- Programming Helper. NVIDIA’s Rubin Platform: The Six-Chip AI Supercomputer That’s Reducing Inference Costs by 10x and Reshaping the Future of Artificial Intelligence. (2026년 1월 25일).
- NVIDIA. NVIDIA Kicks Off the Next Generation of AI With Rubin — Six New Chips, One Incredible AI Supercomputer. (2026년 1월 5일).
- Tom’s Hardware. Nvidia announces Rubin GPUs in 2026, Rubin Ultra in 2027, Feynman also added to roadmap. (2025년 3월 18일).
- Barchart.com. Elon Musk Says Nvidia’s New Rubin Chips ‘Will Be a Rocket Engine for AI’. (2026년 1월 26일).
- YouTube. Inside Vera Rubin How NVIDIA Is Redefining the AI Supercomputer | AI14. (2026년 1월 5일).
- Wikipedia. Rubin (microarchitecture). (접근일: 2026년 2월 5일).
- Reddit. A Discussion on the Announced Specs of Rubin vs Blackwell and how that could translate to Consumer Chips : r/hardware. (2026년 1월 6일).
- TechRadar. ‘AI is entering its next frontier… the foundation of the AI industrial revolution’: Nvidia confirms CoreWeave will be among the first to get Vera Rubin chips as it doubles down on financial commitments. (2026년 1월 29일).
- ZDNET. Nvidia just unveiled Rubin – and it may transform AI computing as we know it. (2026년 1월 9일).
- Medium. Nvidia Launches Vera Rubin Architecture at CES 2026 with Major Performance Gains. (2026년 1월 5일).
- The Motley Fool. The Future of AI Stocks? TSMC Commentary Suggests AI Megatrend | by Beth Kindig. (2026년 2월 2일).
- The Motley Fool. 5 Reasons Why Nvidia Will Be an Incredible Stock to Own in 2026. (2026년 2월 1일).
- NOIRLab. Rubin Observatory Digest for 17 June 2025. (2025년 6월 18일).
- YouTube. NVIDIA’s AI Revolution: Grace Blackwell to Vera Rubin – The Future of Supercomputing & Robotics”. (2025년 6월 23일).
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
기사 제보
제보하실 내용이 있으시면 techmore.main@gmail.com으로 연락주세요.


