인공지능(AI) 기술의 발전은 컴퓨팅 하드웨어의 혁신을 끊임없이 요구하고 있다. 특히 딥러닝 모델의 복잡성이 증가하고 학습 데이터의 규모가 방대해지면서, 기존의 범용 프로세서로는 감당하기 어려운 연산량이 발생하고 있다. 이러한 배경 속에서 Google이 개발한 TPU(Tensor Processing Unit)는 인공지능 워크로드에 특화된 가속기로서 주목받고 있다. 이 보고서는 TPU의 정의, 개발 역사, 핵심 기술, 활용 사례, 현재 동향 및 미래 전망에 이르기까지 TPU에 대한 심층적인 이해를 제공한다.
목차
- 1. TPU(Tensor Processing Unit) 개요
- 2. TPU의 개발 역사 및 발전 과정
- 3. TPU의 핵심 기술 및 아키텍처
- 4. 주요 활용 사례 및 응용 분야
- 5. 현재 TPU 기술 동향
- 6. TPU의 미래 전망
1. TPU(Tensor Processing Unit) 개요
TPU의 정의와 개발 배경 및 목적
TPU(Tensor Processing Unit)는 Google이 인공지능 및 머신러닝 워크로드의 효율적인 처리를 위해 자체적으로 설계하고 개발한 주문형 집적 회로(ASIC, Application-Specific Integrated Circuit)이다. ‘텐서(Tensor)’는 다차원 배열을 의미하며, 딥러닝 모델의 데이터 표현 및 연산의 핵심 단위이다. TPU는 이러한 텐서 연산, 특히 행렬 곱셈(Matrix Multiplication)과 컨볼루션(Convolution) 연산을 고속으로 처리하도록 최적화되어 있다.
Google이 TPU를 개발하게 된 배경은 2000년대 중반부터 급증하기 시작한 딥러닝 기술의 발전과 밀접하게 연관되어 있다. Google은 내부적으로 방대한 양의 데이터와 복잡한 딥러닝 모델을 활용하여 검색, 번역, 이미지 인식 등 다양한 서비스를 제공하고 있었는데, 기존의 중앙 처리 장치(CPU)나 그래픽 처리 장치(GPU)만으로는 이러한 워크로드를 효율적으로 감당하기 어려웠다. 특히, 딥러닝 모델의 학습(training)과 추론(inference) 과정에서 발생하는 막대한 연산량을 저전력으로 빠르게 처리하는 것이 중요한 과제로 부상하였다.
이에 Google은 2013년부터 TPU 개발 프로젝트를 시작하였으며, 2015년에 첫 번째 TPU를 내부적으로 배포하였다. TPU의 주요 목적은 딥러닝 모델의 추론 및 학습 속도를 획기적으로 향상시키고, 동시에 전력 효율성을 극대화하여 데이터 센터 운영 비용을 절감하는 것이었다. 이는 Google의 AI 우선 전략을 뒷받침하는 핵심 인프라로 자리매김하게 되었다.
CPU, GPU와의 주요 특징 및 차이점
TPU는 범용 프로세서인 CPU, 병렬 처리 능력이 뛰어난 GPU와는 다른 고유한 특징을 가지고 있다. 다음은 세 프로세서의 주요 특징과 차이점이다.
- CPU (Central Processing Unit): CPU는 범용적인 연산을 수행하도록 설계된 프로세서로, 순차적인 명령어 처리와 복잡한 제어 로직에 강점을 가진다. 다양한 종류의 작업을 유연하게 처리할 수 있지만, 딥러닝과 같이 대규모 병렬 연산이 필요한 작업에서는 효율성이 떨어진다.
- GPU (Graphics Processing Unit): GPU는 원래 그래픽 처리를 위해 개발되었으나, 수천 개의 작은 코어를 통해 대규모 병렬 연산을 동시에 수행할 수 있는 구조 덕분에 딥러닝 학습에 널리 활용되기 시작했다. 특히 행렬 곱셈과 같은 부동 소수점 연산에 강점을 보이며, CPU보다 훨씬 빠른 속도로 딥러닝 모델을 학습시킬 수 있다. 그러나 범용성을 유지하기 위한 오버헤드가 존재하며, 딥러닝에 특화된 연산 외에는 비효율적인 부분이 있을 수 있다.
- TPU (Tensor Processing Unit): TPU는 딥러닝의 핵심 연산인 텐서 연산에 특화된 ASIC이다. CPU나 GPU와 달리 범용성을 희생하는 대신, 텐서 연산을 위한 하드웨어 가속기를 내장하여 특정 연산에서 압도적인 성능과 전력 효율을 제공한다. 예를 들어, TPU는 부동 소수점 연산 대신 BFloat16(Brain Floating Point)과 같은 정밀도가 낮은 부동 소수점 형식을 사용하여 메모리 대역폭과 연산 속도를 최적화한다. 이는 딥러닝 모델의 정확도에 큰 영향을 주지 않으면서도 연산 효율을 극대화하는 전략이다.
간단히 말해, CPU는 ‘만능 일꾼’, GPU는 ‘그래픽 및 병렬 연산 전문가’, TPU는 ‘인공지능 텐서 연산 전문가’라고 비유할 수 있다. TPU는 딥러닝 워크로드에 특화된 설계 덕분에, 특히 대규모 모델의 학습 및 추론에서 CPU나 GPU 대비 월등한 성능과 전력 효율을 달성할 수 있다.
2. TPU의 개발 역사 및 발전 과정
초기 개발 배경과 목적
TPU의 개발은 2013년 Google 내부에서 시작되었다. 당시 Google은 음성 인식, 이미지 검색, 번역 등 다양한 서비스에 딥러닝 기술을 도입하고 있었는데, 이러한 서비스의 확장은 기존 컴퓨팅 인프라에 막대한 부하를 주었다. 특히, 딥러닝 모델의 추론(inference) 단계에서 발생하는 연산량을 효율적으로 처리하는 것이 시급한 과제였다. 모델 학습(training)에는 GPU가 효과적이었지만, 수십억 명의 사용자에게 실시간으로 서비스를 제공하기 위한 추론 작업에는 더 빠르고 전력 효율적인 솔루션이 필요했다. 이러한 필요성에서 Google은 딥러닝 추론에 최적화된 맞춤형 칩인 1세대 TPU를 개발하게 되었다.
세대별 TPU의 주요 특징과 성능 개선 사항
Google은 1세대 TPU를 시작으로 지속적으로 성능을 개선하고 기능을 확장하며 여러 세대의 TPU를 선보였다.
- 1세대 TPU (2015년 공개):
- 특징: 딥러닝 모델의 추론(inference)에 특화된 ASIC으로 설계되었다. 정수 연산에 중점을 두어 전력 효율성을 극대화하고, 대규모 행렬 곱셈을 고속으로 처리하는 시스톨릭 어레이(Systolic Array) 아키텍처를 도입했다.
- 성능 개선: 당시 GPU 대비 10배에서 30배 높은 성능을 제공하며, 와트당 성능은 80배에 달하는 효율을 보였다.
- 2세대 TPU (2017년 공개, Cloud TPU v2):
- 특징: 1세대 TPU가 추론에 집중했다면, 2세대 TPU는 딥러닝 모델의 학습(training)과 추론 모두를 지원하도록 설계되었다. 고속의 HBM(High Bandwidth Memory)을 탑재하여 메모리 대역폭을 크게 늘렸고, BFloat16 부동 소수점 형식을 도입하여 딥러닝 학습에 필요한 정밀도를 유지하면서도 연산 효율을 높였다.
- 성능 개선: 여러 개의 TPU 칩을 고속 인터커넥트(Interconnect)로 연결하여 거대한 TPU 포드(Pod)를 구성할 수 있게 되었고, 이는 대규모 분산 학습을 가능하게 했다. 하나의 TPU 포드는 수십 페타플롭스(PetaFLOPS)의 연산 능력을 제공한다.
- 3세대 TPU (2018년 공개, Cloud TPU v3):
- 특징: 2세대 TPU의 아키텍처를 기반으로 성능을 더욱 향상시켰다. 클럭 속도를 높이고 HBM 용량을 두 배로 늘렸으며, 액체 냉각 시스템을 도입하여 발열 문제를 해결함으로써 더 높은 성능을 안정적으로 유지할 수 있게 되었다.
- 성능 개선: 3세대 TPU 포드는 최대 100 페타플롭스 이상의 연산 능력을 제공하며, 2세대 대비 약 2배의 성능 향상을 이루었다.
- 4세대 TPU (2021년 공개, Cloud TPU v4):
- 특징: 전력 효율성에 중점을 두고 설계되었으며, 이전 세대 대비 더 많은 TPU 칩을 연결할 수 있는 새로운 옵티컬 인터커넥트(Optical Interconnect) 기술을 도입했다. 이 기술은 TPU 간 통신 지연을 줄이고 대규모 포드의 확장성을 극대화한다.
- 성능 개선: 동일한 전력 소비량에서 3세대 TPU 대비 약 2.7배 높은 성능을 제공하며, 4096개의 칩으로 구성된 포드는 엑사플롭스(ExaFLOPS)에 가까운 연산 능력을 달성한다.
- 5세대 TPU (2023년 공개, Cloud TPU v5e 및 v5p):
- Cloud TPU v5e: 비용 효율성과 유연성에 초점을 맞춘 모델로, 다양한 규모의 워크로드를 지원한다. 추론 및 학습 모두에 최적화되어 있으며, 이전 세대 대비 가격 대비 성능이 크게 향상되었다.
- Cloud TPU v5p: 최고 성능과 확장성을 요구하는 대규모 AI 모델 학습에 특화된 모델이다. 칩당 HBM 용량과 대역폭이 증가했으며, 더 강력한 인터커넥트 기술을 통해 최대 8,960개의 칩으로 구성된 포드를 지원한다. 이는 이전 세대 대비 2배 이상의 텐서 코어 성능과 3배 이상의 HBM 대역폭을 제공한다.
- 향후 세대 (6세대, 7세대 등): Google은 지속적으로 TPU 아키텍처를 발전시키고 있으며, 미래 세대 TPU는 더욱 향상된 연산 능력, 전력 효율성, 그리고 새로운 AI 모델 아키텍처(예: MoE 모델)에 대한 최적화를 목표로 할 것으로 예상된다.
클라우드 TPU와 엣지 TPU의 발전 과정
TPU는 크게 클라우드 환경에서 사용되는 ‘클라우드 TPU’와 엣지 디바이스에 내장되는 ‘엣지 TPU’로 나눌 수 있다.
- 클라우드 TPU: Google Cloud 플랫폼을 통해 외부 개발자와 기업이 사용할 수 있도록 제공되는 TPU 서비스이다. 2세대 TPU부터 클라우드 서비스로 제공되기 시작했으며, 대규모 딥러닝 모델 학습 및 추론에 필요한 막대한 컴퓨팅 자원을 온디맨드(on-demand) 방식으로 제공한다. 클라우드 TPU는 지속적인 세대별 업그레이드를 통해 성능과 확장성을 극대화하며, 전 세계 연구자와 개발자들이 최첨단 AI 모델을 개발하고 배포하는 데 핵심적인 역할을 하고 있다.
- 엣지 TPU (Edge TPU): 클라우드 TPU가 데이터 센터 규모의 연산을 담당한다면, 엣지 TPU는 스마트폰, IoT 기기, 로봇 등 전력 및 공간 제약이 있는 엣지 디바이스에서 AI 추론을 수행하도록 설계된 소형, 저전력 칩이다. 2018년 Google I/O에서 처음 공개된 ‘Coral’ 플랫폼의 핵심 구성 요소로, 온디바이스(on-device) AI를 가능하게 한다. 엣지 TPU는 클라우드 연결 없이 로컬에서 빠른 추론을 제공하여 지연 시간을 줄이고 개인 정보 보호를 강화한다. Google Pixel 스마트폰의 Pixel Neural Core나 Google Tensor 칩에 통합된 AI 가속기 또한 엣지 TPU 기술의 연장선에 있다.
3. TPU의 핵심 기술 및 아키텍처
텐서 연산에 최적화된 핵심 아키텍처 (시스톨릭 어레이) 및 설계 원리
TPU가 텐서 연산에 압도적인 성능을 보이는 핵심적인 이유는 바로 ‘시스톨릭 어레이(Systolic Array)’라는 독특한 아키텍처에 있다. 시스톨릭 어레이는 데이터 흐름과 연산이 마치 심장 박동(systole)처럼 규칙적으로 이루어지는 병렬 처리 구조이다.
- 시스톨릭 어레이의 작동 원리:시스톨릭 어레이는 수많은 처리 요소(Processing Element, PE)들이 격자 형태로 배열되어 있으며, 각 PE는 이웃하는 PE와 직접 연결되어 있다. 행렬 곱셈을 예로 들면, 한 행렬의 요소들은 어레이의 한쪽에서 입력되고, 다른 행렬의 요소들은 다른 쪽에서 입력된다. 데이터는 어레이를 통해 이동하면서 각 PE에서 곱셈 및 덧셈 연산을 수행하고, 중간 결과는 다음 PE로 전달된다. 이러한 파이프라인(pipeline) 방식의 데이터 흐름은 메모리 접근을 최소화하고 연산 효율을 극대화한다.
전통적인 프로세서는 데이터를 처리하기 위해 메모리에서 데이터를 가져와 레지스터에 로드하고, 연산을 수행한 후 다시 메모리에 저장하는 과정을 반복한다. 이 과정에서 메모리 접근(memory access)이 병목 현상을 일으키는 주된 원인이 된다. 시스톨릭 어레이는 데이터를 한 번 로드한 후 여러 PE를 통해 순차적으로 처리함으로써 메모리 접근 횟수를 획기적으로 줄여 이러한 병목 현상을 완화한다.
- 설계 원리:TPU의 설계 원리는 ‘도메인 특화 아키텍처(Domain-Specific Architecture, DSA)’의 전형이다. 이는 범용성을 포기하는 대신, 특정 작업(여기서는 텐서 연산)에 최적화된 하드웨어를 설계하여 최고의 효율을 달성하는 전략이다. TPU는 다음과 같은 설계 원리를 따른다.
- 고정 기능 유닛(Fixed-Function Units): 딥러닝 연산에 자주 사용되는 행렬 곱셈, 컨볼루션 등의 연산을 하드웨어적으로 직접 구현하여 소프트웨어적인 오버헤드를 줄인다.
- 정밀도 최적화: 딥러닝 모델은 일반적으로 높은 정밀도의 부동 소수점 연산을 요구하지 않는다. TPU는 BFloat16과 같이 딥러닝에 충분한 정밀도를 가지면서도 데이터 크기를 줄여 메모리 대역폭과 연산 속도를 향상시키는 부동 소수점 형식을 적극적으로 활용한다.
- 대규모 온칩 메모리: 시스톨릭 어레이의 효율성을 극대화하기 위해 각 TPU 칩 내부에 대규모 온칩 메모리(on-chip memory)를 탑재하여 데이터 이동 거리를 줄이고 접근 속도를 높인다.
- 고속 인터커넥트: 여러 TPU 칩을 연결하여 대규모 분산 학습을 지원하기 위해 고속의 전용 인터커넥트 기술을 사용한다. 이는 수천 개의 TPU 칩이 하나의 거대한 연산 유닛처럼 작동할 수 있도록 한다.
CPU 및 GPU와 비교한 구조적 차이점과 인공지능 워크로드 처리에서의 성능 이점
TPU는 CPU 및 GPU와 다음과 같은 구조적 차이점을 가지며, 이는 인공지능 워크로드 처리에서 상당한 성능 이점으로 이어진다.
- CPU와의 차이점:
- 범용성 vs 특화성: CPU는 다양한 종류의 명령어를 처리하는 복잡한 제어 로직과 캐시 계층을 가지고 있어 범용성이 뛰어나다. 반면 TPU는 텐서 연산이라는 특정 작업에만 집중하여 불필요한 범용 하드웨어를 제거하고 해당 연산을 위한 가속기에 자원을 집중한다.
- 스칼라/벡터 연산 vs 행렬 연산: CPU는 주로 스칼라(단일 값) 및 벡터(1차원 배열) 연산에 최적화되어 있다. TPU는 시스톨릭 어레이를 통해 대규모 행렬(다차원 배열) 연산을 병렬로 처리하는 데 특화되어 있다.
- 성능 이점: 딥러닝 모델은 본질적으로 대규모 행렬 연산의 연속이므로, TPU는 CPU보다 훨씬 적은 전력으로 훨씬 빠른 속도로 딥러닝 워크로드를 처리할 수 있다.
- GPU와의 차이점:
- 프로그래밍 가능성 vs 고정 기능: GPU는 수천 개의 작은 코어를 통해 병렬 연산을 수행하며, CUDA와 같은 프로그래밍 모델을 통해 다양한 병렬 알고리즘을 구현할 수 있는 유연성을 제공한다. TPU는 텐서 연산을 위한 고정 기능 유닛을 중심으로 설계되어 프로그래밍 유연성은 떨어지지만, 특정 연산에서는 더 높은 효율을 보인다.
- 메모리 아키텍처: GPU는 일반적으로 공유 메모리 모델을 사용하며, 코어들이 데이터를 공유하기 위해 메모리 계층 구조를 복잡하게 관리한다. TPU의 시스톨릭 어레이는 데이터가 PE를 통해 흐르면서 연산되는 스트리밍(streaming) 방식을 채택하여 메모리 접근을 최소화한다.
- 전력 효율성: GPU는 그래픽 처리라는 본래 목적을 위해 범용적인 병렬 연산 능력을 갖추고 있어, 딥러닝 연산 외의 부분에서 전력 소모가 발생할 수 있다. TPU는 딥러닝 연산에만 집중함으로써 와트당 성능을 극대화하여 훨씬 높은 전력 효율을 제공한다. Google의 연구에 따르면, 1세대 TPU는 동일한 딥러닝 추론 작업에서 최신 GPU 대비 15배에서 30배의 성능 향상을 보였으며, 와트당 성능은 30배에서 80배 더 높았다.
결론적으로, TPU는 딥러닝 모델의 핵심 연산에 최적화된 아키텍처와 설계 원리를 통해 CPU와 GPU가 가지는 한계를 극복하고, 인공지능 워크로드 처리에서 독보적인 성능과 전력 효율을 제공하는 데 성공하였다.
4. 주요 활용 사례 및 응용 분야
TPU는 Google 내부 서비스의 핵심 인프라로 자리 잡았을 뿐만 아니라, 클라우드 플랫폼을 통해 외부 개발자와 연구 기관에 제공되어 다양한 인공지능 응용 분야에서 활용되고 있다. 또한, 엣지 디바이스에도 적용되어 온디바이스 AI 시대를 열고 있다.
Google 내부 서비스에서의 TPU 활용 사례
Google은 TPU를 자사 서비스의 인공지능 기능을 강화하는 데 적극적으로 활용하고 있다.
- Google 검색: 검색 결과의 정확도와 관련성을 높이는 랭킹 모델, 자연어 처리 모델 등에 TPU가 활용된다. 사용자의 검색 쿼리에 대한 실시간 응답을 제공하면서도 복잡한 AI 모델을 구동하는 데 TPU의 빠른 추론 능력이 필수적이다.
- Google 번역: 신경망 기계 번역(Neural Machine Translation, NMT) 모델은 방대한 양의 연산을 요구한다. TPU는 Google 번역 서비스가 수많은 언어 쌍에 대해 빠르고 정확한 번역을 제공할 수 있도록 지원한다.
- AlphaGo: Google DeepMind가 개발한 바둑 AI인 AlphaGo는 TPU를 사용하여 훈련되었다. 특히 AlphaGo Zero와 AlphaZero와 같은 최신 버전은 TPU의 강력한 학습 능력을 통해 인간의 지식 없이도 스스로 학습하여 세계 최고 수준의 기력을 달성했다.
- YouTube 추천 시스템: 사용자에게 맞춤형 동영상을 추천하는 YouTube의 추천 시스템은 복잡한 딥러닝 모델을 기반으로 한다. TPU는 수십억 명의 사용자에게 실시간으로 개인화된 추천을 제공하는 데 필요한 대규모 추론 연산을 처리한다.
- Google 포토: 이미지 인식, 객체 감지, 사진 분류 등 Google 포토의 다양한 AI 기능은 TPU의 빠른 추론 성능 덕분에 가능하다.
클라우드 TPU를 통한 외부 개발자 및 연구 기관의 머신러닝 모델 학습 및 추론 활용 사례
Google Cloud는 클라우드 TPU를 서비스로 제공하여 전 세계 개발자와 연구자들이 최첨단 AI 연구 및 개발에 참여할 수 있도록 지원한다.
- 대규모 언어 모델(LLM) 학습: GPT-3, PaLM, Gemini와 같은 초대규모 언어 모델은 수천억 개의 매개변수를 가지며, 이를 학습시키기 위해서는 페타플롭스(PetaFLOPS) 이상의 연산 능력을 가진 컴퓨팅 자원이 필요하다. 클라우드 TPU 포드는 이러한 대규모 모델의 분산 학습에 최적화되어 있으며, 많은 연구 기관과 기업들이 클라우드 TPU를 활용하여 LLM을 개발하고 있다.
- 신약 개발 및 생명 과학 연구: 단백질 구조 예측, 약물 발견, 유전체 분석 등 생명 과학 분야에서 딥러닝 모델의 활용이 증가하고 있다. 클라우드 TPU는 이러한 복잡한 모델의 학습 및 시뮬레이션을 가속화하여 연구 시간을 단축하고 새로운 발견을 가능하게 한다. 예를 들어, DeepMind의 AlphaFold는 단백질 구조 예측에 TPU를 활용하여 혁신적인 성과를 거두었다.
- 기후 모델링 및 재료 과학: 기후 변화 예측, 신소재 개발 등 과학 컴퓨팅 분야에서도 딥러닝 모델이 도입되고 있으며, 클라우드 TPU는 대규모 데이터셋을 기반으로 하는 복잡한 시뮬레이션 및 모델 학습에 기여한다.
- 금융 분석 및 사기 탐지: 금융 기관은 클라우드 TPU를 사용하여 대량의 금융 데이터를 분석하고, 사기 거래를 탐지하며, 시장 예측 모델을 학습시키는 데 활용한다.
Edge TPU, Pixel Neural Core, Google Tensor와 같은 엣지 및 소비자 기기에서의 응용 사례
TPU 기술은 클라우드를 넘어 스마트폰, 스마트 홈 기기 등 엣지 디바이스에도 적용되어 온디바이스 AI 기능을 강화하고 있다.
- Edge TPU (Coral 플랫폼): Google의 Coral 플랫폼은 Edge TPU를 기반으로 한다. 이는 저전력으로 실시간 AI 추론을 수행할 수 있어 산업 자동화, 스마트 시티, 의료 기기, 로봇 공학 등 다양한 엣지 컴퓨팅 분야에서 활용된다. 예를 들어, 공장 자동화에서 불량품을 실시간으로 감지하거나, 스마트 카메라가 사람이나 객체를 식별하는 데 사용될 수 있다.
- Pixel Neural Core: Google Pixel 스마트폰에 탑재되었던 Pixel Neural Core는 Edge TPU 기술을 활용한 전용 칩이다. 이는 이미지 처리(HDR+, 야간 시야), 음성 인식, 실시간 번역 등 스마트폰의 다양한 AI 기능을 클라우드 연결 없이 기기 내에서 빠르게 처리하도록 돕는다.
- Google Tensor: Google은 2021년부터 자체 개발한 모바일 시스템 온 칩(SoC)인 Google Tensor를 Pixel 스마트폰에 탑재하기 시작했다. Tensor 칩은 강력한 AI 가속기(TPU 기술 기반)를 내장하고 있어, Pixel 스마트폰이 이전 세대보다 훨씬 뛰어난 음성 인식, 이미지 처리, 언어 번역 등의 AI 기능을 제공할 수 있게 한다. 이는 단순히 클라우드 API를 호출하는 것을 넘어, 기기 자체에서 복잡한 AI 모델을 효율적으로 실행할 수 있게 함으로써 사용자 경험을 혁신하고 있다.
이처럼 TPU는 데이터 센터의 거대한 AI 모델 학습부터 일상생활 속 엣지 디바이스의 스마트 기능 구현에 이르기까지, 인공지능의 광범위한 응용 분야에서 핵심적인 역할을 수행하고 있다.
5. 현재 TPU 기술 동향
TPU는 Google의 지속적인 투자와 연구 개발을 통해 끊임없이 진화하고 있으며, 클라우드 및 엣지 환경 모두에서 그 영향력을 확대하고 있다.
클라우드 TPU의 최신 세대 발전 방향과 특징
Google은 클라우드 TPU의 최신 세대인 v5e 및 v5p를 통해 AI 워크로드의 다양성과 규모에 대응하고 있다.
- Cloud TPU v5e (비용 효율성 및 유연성): 2023년 9월에 공개된 Cloud TPU v5e는 이전 세대 대비 가격 대비 성능을 크게 향상시키는 데 중점을 두었다. 이 버전은 추론 및 학습 워크로드 모두에 최적화되어 있으며, 다양한 크기의 모델과 예산 제약이 있는 사용자에게 유연한 옵션을 제공한다. v5e는 최대 256개의 칩으로 구성된 포드를 지원하며, 이전 세대 대비 추론 성능은 2배, 학습 성능은 2.5배 향상되었다고 Google은 밝혔다.
- Cloud TPU v5p (최고 성능 및 확장성): 같은 시기에 발표된 Cloud TPU v5p는 최고 수준의 성능과 확장성을 요구하는 초대규모 AI 모델 학습을 위해 설계되었다. v5p는 칩당 HBM 용량과 대역폭을 크게 늘렸으며, 향상된 고대역폭 인터커넥트(High-Bandwidth Interconnect)를 통해 최대 8,960개의 칩으로 구성된 포드를 지원한다. 이는 이전 세대 대비 2배 이상의 텐서 코어 성능과 3배 이상의 HBM 대역폭을 제공하여, 수천억 개 이상의 매개변수를 가진 대규모 언어 모델(LLM) 및 생성형 AI 모델 학습에 최적화되어 있다.
- 발전 방향: 최신 세대 TPU의 발전 방향은 크게 세 가지로 요약할 수 있다. 첫째, 성능 및 효율성 극대화: 더 높은 연산 능력과 와트당 성능을 달성하여 AI 모델 학습 및 추론 시간을 단축하고 비용을 절감한다. 둘째, 확장성 강화: 수천 개의 칩을 연결하여 엑사스케일(Exascale) 컴퓨팅에 가까운 연산 능력을 제공함으로써 초대규모 AI 모델의 학습을 가능하게 한다. 셋째, 다양한 워크로드 지원: 추론과 학습 모두에 최적화된 유연한 아키텍처를 제공하여 더 넓은 범위의 AI 응용 분야를 지원한다.
엣지 디바이스 및 모바일 기기에서의 TPU 적용 확대 추세
클라우드 TPU가 데이터 센터의 AI를 이끌고 있다면, 엣지 TPU는 스마트폰, 스마트 홈 기기, 웨어러블, IoT 디바이스 등 다양한 엣지 디바이스에서 AI 기능을 구현하는 데 핵심적인 역할을 하고 있다. 이러한 추세는 다음과 같은 이유로 가속화되고 있다.
- 저지연성 및 실시간 처리: 클라우드 연결 없이 기기 내에서 AI 연산을 수행함으로써 네트워크 지연을 없애고 실시간 응답이 필요한 애플리케이션(예: 자율주행, 로봇 제어)에 필수적이다.
- 개인 정보 보호 및 보안: 민감한 사용자 데이터가 클라우드로 전송되지 않고 기기 내에서 처리되므로 개인 정보 보호 및 보안 측면에서 유리하다.
- 전력 효율성: 엣지 디바이스는 배터리 수명이 중요하므로, 저전력으로 AI 연산을 수행할 수 있는 엣지 TPU의 역할이 더욱 중요해진다.
- Google Tensor 칩의 성공: Google Pixel 스마트폰에 탑재된 Tensor 칩은 AI 가속기를 통해 온디바이스 AI 기능을 대폭 강화하며, 모바일 SoC 시장에서 AI 특화 칩의 중요성을 부각시켰다. 이는 다른 모바일 칩 제조사들에게도 AI 가속기 통합의 중요성을 시사하고 있다.
이러한 추세는 스마트폰의 카메라 기능 향상(예: 이미지 처리, 동영상 안정화), 음성 비서의 성능 개선, 웨어러블 기기의 건강 모니터링, 스마트 홈 기기의 지능형 제어 등 다양한 소비자 경험 혁신으로 이어지고 있다.
관련 소프트웨어 생태계의 발전 현황
TPU의 하드웨어 발전과 함께 이를 효율적으로 활용하기 위한 소프트웨어 생태계도 지속적으로 발전하고 있다.
- TensorFlow 및 JAX: Google이 개발한 딥러닝 프레임워크인 TensorFlow는 TPU를 기본적으로 지원하며, TPU의 성능을 최대한 활용할 수 있도록 최적화되어 있다. 또한, Google DeepMind에서 개발한 JAX는 고성능 수치 연산을 위한 라이브러리로, TPU에서 매우 효율적으로 작동한다.
- PyTorch/XLA: 최근에는 Meta가 개발한 인기 딥러닝 프레임워크인 PyTorch도 XLA(Accelerated Linear Algebra) 컴파일러를 통해 TPU를 지원한다. 이는 더 많은 개발자들이 익숙한 PyTorch 환경에서 TPU의 강력한 성능을 활용할 수 있게 한다.
- 컴파일러 및 최적화 도구: TPU의 고정 기능 아키텍처를 최대한 활용하기 위해서는 효율적인 컴파일러와 최적화 도구가 필수적이다. Google은 TensorFlow Compiler, XLA 등 다양한 도구를 개발하여 개발자들이 TPU에서 모델을 쉽게 배포하고 최적화할 수 있도록 지원한다.
- 클라우드 플랫폼 통합: Google Cloud는 클라우드 TPU를 Vertex AI, Colab 등 자사의 AI 플랫폼 및 서비스와 긴밀하게 통합하여 개발자들이 손쉽게 TPU 자원을 프로비저닝하고 관리할 수 있도록 한다.
이러한 소프트웨어 생태계의 발전은 TPU 하드웨어의 잠재력을 최대한 끌어내고, 더 많은 개발자들이 TPU를 활용하여 혁신적인 AI 애플리케이션을 개발할 수 있는 기반을 마련하고 있다.
6. TPU의 미래 전망
인공지능 기술의 발전은 가속화될 것이며, TPU는 이러한 변화의 최전선에서 핵심적인 역할을 계속 수행할 것으로 예상된다. 하드웨어 및 소프트웨어 측면에서의 잠재적 발전 가능성과 새로운 응용 분야, 그리고 인공지능 가속기 시장에서의 TPU의 역할 변화에 대해 논의한다.
인공지능 기술 발전과 함께 TPU가 나아갈 방향
미래의 TPU는 인공지능 기술의 진화에 발맞춰 다음과 같은 방향으로 발전할 것으로 전망된다.
- 초대규모 모델 및 생성형 AI 최적화: GPT-4, Gemini와 같은 초대규모 언어 모델(LLM)과 확산 모델(Diffusion Model) 기반의 생성형 AI는 더욱 복잡해지고 매개변수 규모가 커질 것이다. 미래 TPU는 이러한 모델의 학습 및 추론에 필요한 연산 능력, 메모리 대역폭, 그리고 분산 처리 효율성을 더욱 극대화하는 방향으로 진화할 것이다. 특히, Mixture-of-Experts (MoE)와 같은 희소(sparse) 모델 아키텍처를 효율적으로 처리하기 위한 새로운 하드웨어 지원이 강화될 수 있다.
- 멀티모달(Multimodal) AI 지원 강화: 텍스트, 이미지, 오디오, 비디오 등 다양한 형태의 데이터를 동시에 처리하는 멀티모달 AI 모델이 중요해지면서, TPU는 이러한 복합적인 데이터 유형을 효율적으로 처리할 수 있도록 아키텍처를 더욱 최적화할 것이다.
- 에너지 효율성 극대화: AI 워크로드의 증가와 함께 데이터 센터의 전력 소비량은 심각한 문제로 부상하고 있다. 미래 TPU는 와트당 성능을 지속적으로 향상시켜 에너지 효율을 극대화하고, 지속 가능한 AI 컴퓨팅을 위한 핵심 솔루션으로 자리매김할 것이다.
- 양자 컴퓨팅과의 융합: 장기적으로 양자 컴퓨팅 기술이 발전함에 따라, 양자 머신러닝 알고리즘을 가속화하기 위한 하이브리드 컴퓨팅 아키텍처에서 TPU가 특정 역할을 수행할 가능성도 배제할 수 없다.
하드웨어 및 소프트웨어 측면에서의 잠재적 발전 가능성
TPU의 미래는 하드웨어 혁신과 소프트웨어 생태계의 동반 성장을 통해 더욱 밝아질 것이다.
- 하드웨어 측면:
- 3D 스태킹 및 이종 통합: 칩렛(chiplet) 기술과 3D 스태킹(3D stacking) 기술을 활용하여 더 많은 연산 유닛과 고대역폭 메모리를 하나의 패키지에 통합함으로써 성능과 효율을 더욱 높일 수 있다.
- 프로그래밍 가능성 확장: ASIC의 고정 기능 한계를 일부 보완하기 위해, 특정 연산에 대한 유연성을 제공하는 프로그래머블 로직(programmable logic) 요소를 통합하는 하이브리드 아키텍처가 등장할 수도 있다.
- 새로운 메모리 기술: HBM(High Bandwidth Memory)을 넘어선 차세대 메모리 기술을 도입하여 메모리 병목 현상을 더욱 완화하고 데이터 처리 속도를 향상시킬 것이다.
- 소프트웨어 측면:
- 자동화된 최적화 도구: AI 모델의 복잡성이 증가함에 따라, 개발자가 수동으로 최적화하는 대신 자동으로 TPU에 최적화된 코드를 생성하고 배포하는 고급 컴파일러 및 런타임 환경이 더욱 중요해질 것이다.
- 범용 프레임워크 지원 확대: TensorFlow, JAX 외에도 다양한 딥러닝 프레임워크에서 TPU를 더욱 쉽고 효율적으로 사용할 수 있도록 지원이 강화될 것이다.
- 클라우드 서비스의 지능화: 클라우드 TPU 서비스는 사용자의 워크로드 패턴을 분석하여 최적의 TPU 자원을 자동으로 할당하고 관리하는 등 더욱 지능화될 것이다.
새로운 응용 분야와 인공지능 가속기 시장에서의 TPU의 역할 변화
TPU는 인공지능 가속기 시장에서 Google의 핵심 경쟁력으로 작용하며, 그 역할은 더욱 확대될 것이다.
- 산업 전반으로의 확산: 현재 주로 IT 및 연구 분야에서 활용되던 TPU가 제조업, 의료, 금융, 유통, 농업 등 전통 산업 분야로 확산되어 AI 기반 혁신을 주도할 것이다. 특히, 엣지 TPU는 산업 현장의 로봇, 센서, 자율 시스템에 내장되어 실시간 의사결정을 지원하는 핵심 요소가 될 것이다.
- 경쟁 심화 속 차별화 전략: NVIDIA의 GPU, AMD의 Instinct MI 시리즈, Intel의 Gaudi 등 다양한 인공지능 가속기가 경쟁하는 시장에서, TPU는 Google의 독점적인 AI 인프라 및 소프트웨어 생태계와의 시너지를 통해 차별화된 가치를 제공할 것이다. 특히, Google의 방대한 AI 연구 및 서비스 경험이 TPU 설계에 반영되어 특정 워크로드에서 독보적인 성능을 유지할 것으로 예상된다.
- 개방형 AI 생태계 기여: Google은 클라우드 TPU를 통해 개방형 AI 생태계에 기여하고 있으며, 이는 전 세계 AI 연구 및 개발을 가속화하는 데 중요한 역할을 할 것이다. TPU는 단순한 하드웨어를 넘어, Google의 AI 비전을 실현하는 전략적 도구로서 그 중요성이 더욱 커질 것이다.
TPU는 인공지능 시대의 핵심 인프라로서, 끊임없는 기술 혁신을 통해 더욱 강력하고 효율적인 AI 컴퓨팅 환경을 제공하며, 인류의 삶을 변화시킬 새로운 AI 응용 분야를 개척하는 데 중요한 동력이 될 것이다.
참고 문헌
- Jouppi, N. P., Young, C., Patil, N., Agrawal, D., Bajwa, R., Bates, S., … & Dean, J. (2017). In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture (ISCA).
- Google Cloud. (n.d.). TPU vs. GPU vs. CPU: What’s the difference? Retrieved from [https://cloud.google.com/tpu/docs/tpus-vs-gpus-cpus](https://cloud.google.com/tpu/docs/tpus-vs-gpus-cpus)
- Jouppi, N. P., Agrawal, D., Bajwa, R., Bates, S., Bhatia, K., Bondalapati, C., … & Dean, J. (2018). Motivation for and experience with the first generation of Google’s Tensor Processing Unit. IEEE Micro, 38(3), 73-85.
- Google Cloud. (2018). Google Cloud TPU v3: What’s new and why it matters for AI. Retrieved from [https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-tpu-v3-whats-new-and-why-it-matters-for-ai](https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-tpu-v3-whats-new-and-why-it-matters-for-ai)
- Google Cloud. (2021). Google Cloud TPU v4: Next-generation AI infrastructure. Retrieved from [https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-tpu-v4-next-generation-ai-infrastructure](https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-tpu-v4-next-generation-ai-infrastructure)
- Google Cloud. (2023). Introducing Cloud TPU v5e: Cost-efficient and versatile AI accelerators. Retrieved from [https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-tpu-v5e-cost-efficient-and-versatile-ai-accelerators](https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-tpu-v5e-cost-efficient-and-versatile-ai-accelerators)
- Google Cloud. (2023). Cloud TPU v5p: Our most powerful and scalable AI accelerator for training large models. Retrieved from [https://cloud.google.com/blog/products/ai-machine-learning/cloud-tpu-v5p-our-most-powerful-and-scalable-ai-accelerator-for-training-large-models](https://cloud.google.com/blog/products/ai-machine-learning/cloud-tpu-v5p-our-most-powerful-and-scalable-ai-accelerator-for-training-large-models)
- Coral. (n.d.). About Edge TPU. Retrieved from [https://coral.ai/docs/edgetpu/](https://coral.ai/docs/edgetpu/)
- Kung, H. T. (1982). Why systolic architectures?. Computer, 15(1), 37-46.
- Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., … & Hassabis, D. (2017). Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv preprint arXiv:1712.01815.
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., … & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589.
- Google. (2018). The Pixel 3 and the Neural Core. Retrieved from [https://www.blog.google/products/pixel/pixel-3-and-neural-core/](https://www.blog.google/products/pixel/pixel-3-and-neural-core/)
- Google. (2021). Introducing Google Tensor: Google’s first custom-built chip for Pixel. Retrieved from [https://blog.google/products/pixel/tensor/](https://blog.google/products/pixel/tensor/)
- Google. (n.d.). JAX on Cloud TPUs. Retrieved from [https://cloud.google.com/tpu/docs/jax-overview](https://cloud.google.com/tpu/docs/jax-overview)
- PyTorch. (n.d.). PyTorch/XLA. Retrieved from [https://github.com/pytorch/xla](https://github.com/pytorch/xla)
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
기사 제보
제보하실 내용이 있으시면 techmore.main@gmail.com으로 연락주세요.


