목차
- 1. 파운데이션 모델이란 무엇인가요?
- 2. 파운데이션 모델의 역사와 발전
- 3. 파운데이션 모델의 핵심 기술 및 원리
- 4. 파운데이션 모델의 주요 활용 사례
- 5. 파운데이션 모델의 현재 동향 및 과제
- 6. 파운데이션 모델의 미래 전망
1. 파운데이션 모델이란 무엇인가요?
파운데이션 모델은 현대 인공지능 분야에서 가장 혁신적이고 중요한 개념 중 하나로 부상하고 있다. 이는 단순한 기술적 진보를 넘어, 인공지능 시스템을 개발하고 활용하는 방식에 근본적인 변화를 가져오고 있다.
1.1. 정의 및 주요 특징
파운데이션 모델(Foundation Model, FM)은 방대한 데이터셋으로 사전 학습되어 다양한 하위 작업에 전이 학습될 수 있는 대규모 딥러닝 신경망 모델이다. 이 용어는 2021년 스탠퍼드 인간 중심 인공지능 연구소(Stanford Institute for Human-Centered Artificial Intelligence, HAI)에서 처음 사용되었으며, AI 개발의 새로운 패러다임을 설명하기 위해 고안되었다. 기존의 머신러닝 모델이 특정 작업을 위해 처음부터 훈련되는 ‘맞춤형 도구’였다면, 파운데이션 모델은 다양한 용도로 재사용 가능한 ‘범용 인프라’ 역할을 수행한다.
파운데이션 모델의 주요 특징은 다음과 같다.
- 범용성 (General-purpose): 파운데이션 모델은 특정 작업에 특화되지 않고, 언어 이해, 이미지 인식, 코드 생성 등 광범위한 작업을 수행할 수 있도록 설계된다. 이는 하나의 모델이 다양한 도메인과 애플리케이션에 적용될 수 있음을 의미한다.
- 적응성 (Adaptability): 사전 학습된 파운데이션 모델은 특정 하위 작업에 맞춰 최소한의 추가 훈련(미세 조정, Fine-tuning)이나 프롬프트 엔지니어링을 통해 효율적으로 적응할 수 있다. 이러한 적응 방식에는 프롬프팅, 인컨텍스트 학습(in-context learning), 미세 조정(fine-tuning), LoRA(Low-Rank Adaptation) 등이 있다.
- 확장성 (Scalability): 파운데이션 모델은 수십억 개에서 수조 개에 이르는 방대한 매개변수(parameter)를 가지며, 모델의 크기와 훈련 데이터의 양이 증가할수록 성능이 예측 가능하게 향상되는 경향을 보인다. 이러한 대규모 확장은 복잡한 패턴과 관계를 학습하는 데 필수적이지만, 동시에 막대한 컴퓨팅 자원(주로 GPU)을 필요로 한다.
- 전이 학습 (Transfer Learning): 파운데이션 모델은 한 작업에서 학습한 지식을 다른 관련 작업에 적용하는 전이 학습(transfer learning) 개념을 기반으로 한다. 이는 새로운 애플리케이션을 개발할 때 모델을 처음부터 훈련할 필요 없이, 이미 학습된 지식을 활용하여 개발 시간과 비용을 크게 절감할 수 있게 한다.
- 새로운 기능 (Emergent Capabilities): 대규모로 훈련된 파운데이션 모델은 명시적으로 훈련되지 않은 작업도 수행할 수 있는 ‘새로운 기능(emergent capabilities)’을 보여주기도 한다. 이는 모델이 단순히 학습된 패턴을 반복하는 것을 넘어, 복잡한 추론이나 문제 해결 능력을 발휘할 수 있음을 시사한다.
1.2. LLM 및 생성형 AI와의 관계
파운데이션 모델, 대규모 언어 모델(LLM), 생성형 AI는 밀접하게 관련되어 있지만 서로 다른 개념이다. 이들 간의 관계를 이해하는 가장 좋은 방법은 ‘엔진’과 ‘기능’으로 비유하는 것이다.
- 대규모 언어 모델(LLM): LLM은 파운데이션 모델의 주요 유형 중 하나이다. LLM은 이름에서 알 수 있듯이 방대한 양의 텍스트와 코드를 대상으로 특별히 훈련된 모델이다. OpenAI의 GPT 시리즈(예: GPT-3, GPT-4)와 Google의 BERT가 대표적인 LLM이자 파운데이션 모델의 초기 사례이다. 모든 LLM은 파운데이션 모델이지만, 모든 파운데이션 모델이 LLM인 것은 아니다. 파운데이션 모델이라는 더 넓은 범주에는 이미지, 오디오, 비디오 또는 이들의 조합(멀티모달)과 같은 다른 데이터 유형으로 훈련된 모델도 포함되기 때문이다.
- 생성형 AI (Generative AI): 생성형 AI는 파운데이션 모델이 수행할 수 있는 주요 ‘기능’ 중 하나로, 텍스트, 이미지, 코드와 같은 새로운 콘텐츠를 생성하는 능력을 의미한다. 챗GPT와 같은 생성형 AI 애플리케이션은 대규모 언어 모델(LLM)이라는 파운데이션 모델을 기반으로 작동한다. 대부분의 파운데이션 모델은 생성 작업에 널리 사용되지만, 복잡한 분류나 분석과 같은 비생성 목적으로도 활용될 수 있다. 즉, 파운데이션 모델은 새로운 콘텐츠를 생성하는 ‘생성형’ 기능뿐만 아니라 기존 데이터를 이해하고 분석하는 ‘판별형’ 기능도 수행할 수 있는 강력한 기반 기술이다.
2. 파운데이션 모델의 역사와 발전
파운데이션 모델의 개념이 등장하기까지는 수십 년에 걸친 인공지능 연구와 기술 발전이 있었다. 특히 딥러닝과 특정 아키텍처의 발전은 파운데이션 모델의 출현에 결정적인 역할을 했다.
2.1. 초기 연구 및 기반 기술
파운데이션 모델은 딥러닝 신경망, 전이 학습, 자기 지도 학습과 같은 기존 머신러닝 기술을 기반으로 구축되었다. 특히 인공지능 분야의 핵심 전환점은 ‘트랜스포머(Transformer)’ 아키텍처의 등장이었다.
- 딥러닝의 발전: 2010년대 중반 이후 딥러닝(Deep Learning) 기술이 비약적으로 발전하면서, 다층 신경망을 통해 복잡한 패턴을 학습하는 능력이 크게 향상되었다. 이는 파운데이션 모델과 같은 대규모 모델의 기반을 마련하는 데 기여했다.
- 트랜스포머 아키텍처의 등장: 2017년 Google이 발표한 트랜스포머 아키텍처는 파운데이션 모델의 부상에 결정적인 역할을 했다. 트랜스포머는 ‘어텐션(Attention)’ 메커니즘을 기반으로 하여, 입력 데이터의 각 부분이 다른 부분과 어떻게 관련되는지 학습한다. 이는 기존 순환 신경망(RNN)이나 합성곱 신경망(CNN)보다 훨씬 효율적으로 장거리 의존성(long-range dependencies)을 포착하고, 특히 병렬 처리가 가능하여 대규모 데이터셋에 대한 훈련 시간을 획기적으로 단축시켰다. 트랜스포머의 도입으로 언어 모델은 재사용 가능하게 되었고, 정확도 또한 지속적으로 향상되었다.
2.2. 대규모 사전 학습 모델의 등장
트랜스포머 아키텍처를 기반으로 대규모 데이터셋에 사전 학습된 모델들이 등장하면서 인공지능 분야는 혁신적인 변화를 맞이했다.
- BERT의 출현: 2018년 Google이 공개한 BERT(Bidirectional Encoder Representations from Transformers)는 최초의 파운데이션 모델 중 하나로 평가받는다. BERT는 양방향 모델로서, 문맥 전체를 분석하여 단어의 의미를 파악하는 방식으로 훈련되었다. 이는 자연어 처리(NLP) 분야에서 전례 없는 성능 향상을 가져왔다.
- GPT 시리즈의 등장: OpenAI가 개발한 GPT(Generative Pre-trained Transformer) 시리즈는 파운데이션 모델의 대표적인 성공 사례이다. 특히 GPT-3.5를 기반으로 한 챗GPT(ChatGPT)의 2022년 출시는 파운데이션 모델과 생성형 AI가 대중에게 널리 알려지는 계기가 되었다. GPT-4는 1,700조 개에 달하는 매개변수와 5조 개 이상의 단어로 훈련된 거대한 모델로, 인간과 유사한 텍스트를 생성하고 다양한 언어 작업을 수행하는 데 탁월한 능력을 보여주었다.
- 혁신적 영향력: 이러한 대규모 사전 학습 모델들은 인공지능 연구의 패러다임을 ‘특정 작업에 특화된 모델’에서 ‘적응 가능한 범용 모델’로 전환시켰다. 웹에서 수집된 대규모 데이터셋과 자기 지도 학습 방식을 활용하여 훈련된 이 모델들은 인공지능의 잠재력을 극대화하는 새로운 가능성을 제시했다.
3. 파운데이션 모델의 핵심 기술 및 원리
파운데이션 모델이 광범위한 작업에서 뛰어난 성능을 발휘하는 것은 그 내부의 정교한 기술적 원리와 구성 요소 덕분이다. 모델 아키텍처, 훈련 방식, 데이터 처리, 그리고 확장성과 적응성은 파운데이션 모델의 핵심을 이룬다.
3.1. 모델 아키텍처 및 훈련 방식
파운데이션 모델의 기술적 기반은 주로 트랜스포머 아키텍처와 자기 지도 학습 방식에 있다.
- 모델 아키텍처: 많은 파운데이션 모델, 특히 자연어 처리(NLP) 분야의 모델들은 트랜스포머 아키텍처를 채택한다. 트랜스포머는 인코더와 디코더로 구성되며, 인코더는 입력 시퀀스를 임베딩(embedding)이라는 수치적 표현으로 변환하여 토큰의 의미론적, 위치적 정보를 포착한다. 디코더는 이러한 임베딩을 기반으로 출력을 생성한다. 오늘날 대부분의 대규모 언어 모델(LLM)은 주로 디코더 구성 요소를 활용한다.
- 자기 지도 학습 (Self-supervised learning): 파운데이션 모델은 방대한 양의 레이블 없는(unlabeled) 데이터에 대해 자기 지도 학습(self-supervised learning) 방식을 사용하여 훈련된다. 이 방식에서는 모델 자체가 레이블 없는 데이터에서 학습 작업을 생성하고 레이블을 만든다. 예를 들어, 텍스트 데이터의 경우 문장에서 누락된 단어를 예측하거나 다음 단어를 예측하는 방식으로 학습이 이루어진다. 이를 통해 모델은 데이터 내의 복잡한 패턴, 관계, 그리고 기본적인 구조를 스스로 학습하게 된다. 지도 학습(supervised learning)처럼 사람이 직접 레이블을 지정하는 데 드는 시간과 비용을 크게 절감할 수 있다는 장점이 있다.
- 대규모 훈련 과정: 파운데이션 모델의 훈련은 엄청난 컴퓨팅 자원(GPU 또는 TPU)을 필요로 하며, 모델의 크기와 데이터셋의 복잡성에 따라 며칠에서 몇 주까지 소요될 수 있다. 이러한 대규모 훈련을 효율적으로 수행하기 위해 데이터 병렬 처리, 텐서 병렬 처리, 시퀀스 병렬 처리, FSDP(Fully Sharded Data Parallel)와 같은 분산 훈련 기술이 활용된다.
3.2. 데이터 수집 및 처리
파운데이션 모델의 성능은 훈련에 사용되는 데이터셋의 규모와 품질에 크게 좌우된다.
- 방대한 데이터셋의 중요성: 파운데이션 모델은 ‘방대한(vast)’ 또는 ‘대규모(massive)’ 데이터셋으로 훈련된다. ‘더 많은 데이터가 더 나은 성능으로 이어진다’는 원칙에 따라, 모델은 다양한 패턴, 스타일, 정보를 학습하여 새로운 데이터에 효과적으로 일반화할 수 있게 된다.
- 데이터 수집: 훈련 데이터는 책, 기사, 웹사이트 등 다양한 출처에서 수집된다. OpenAI의 파운데이션 모델은 공개적으로 사용 가능한 인터넷 정보, 제3자와의 파트너십을 통해 접근하는 정보, 그리고 사용자, 인간 트레이너, 연구원이 제공하거나 생성하는 정보를 활용한다. Apple의 경우, 웹 크롤러인 AppleBot이 수집한 공개 데이터와 라이선스 데이터를 조합하여 모델을 훈련한다.
- 정제 및 전처리: 수집된 원시 데이터는 모델 훈련에 사용되기 전에 철저한 처리 과정을 거친다. 이 과정에는 콘텐츠 이해를 위한 분류, 혐오 발언이나 중복 항목과 같은 불필요한 자료 제거를 위한 필터링, 그리고 최종적으로 깨끗하고 조직화된 데이터셋을 형성하는 정제 작업이 포함된다. 특히, 사회 보장 번호나 신용 카드 번호와 같은 개인 식별 정보(PII)는 필터링되며, 비속어 및 저품질 콘텐츠도 훈련 말뭉치에 포함되지 않도록 걸러진다. 데이터 추출, 중복 제거, 모델 기반 분류기를 통한 고품질 문서 식별 등도 중요한 전처리 단계이다.
3.3. 확장성 및 적응성
파운데이션 모델의 핵심 강점은 그 확장성과 다양한 작업에 대한 적응 능력에 있다.
- 모델 크기 확장 (Scaling): 파운데이션 모델의 정확성과 기능은 모델의 크기와 훈련 데이터의 양에 비례하여 예측 가능하게 확장되는 경향이 있다. ‘확장 법칙(scaling laws)’은 데이터, 모델 크기, 컴퓨팅 사용량과 같은 자원과 모델의 기능 간의 관계를 설명하는 경험적 추세이다. 수십억 개에서 수조 개에 달하는 매개변수를 가진 모델은 데이터 내의 복잡하고 미묘한 패턴을 포착할 수 있게 된다. 이러한 확장은 대규모 데이터 분석을 위한 파운데이션 모델의 역량을 향상시키는 데 기여한다.
- 다양한 하위 작업에 적응 (Adaptation): 파운데이션 모델은 본질적으로 다목적이며, 특정 사용 사례에 맞게 ‘적응(adaptation)’이 필요하다. 이러한 적응은 모델을 처음부터 다시 훈련하는 것보다 훨씬 적은 비용과 시간으로 이루어진다. 적응 방법으로는 프롬프트 엔지니어링, 인컨텍스트 학습(in-context learning), 미세 조정(fine-tuning), LoRA(Low-Rank Adaptation) 등이 있다. 미세 조정을 통해 모델은 특정 작업이나 도메인에 맞게 사용자 정의될 수 있으며, 이는 처음부터 모델을 훈련할 필요성을 줄여준다. 또한, 훈련 데이터가 거의 없거나 전혀 없는 상황에서도 모델을 활용할 수 있는 제로샷(zero-shot) 및 퓨샷(few-shot) 학습과 같은 기술도 적응성을 높이는 방법이다.
4. 파운데이션 모델의 주요 활용 사례
파운데이션 모델은 그 범용성과 적응성 덕분에 다양한 산업 분야와 응용 프로그램에서 혁신적인 변화를 이끌고 있다.
4.1. 자연어 처리 (NLP)
파운데이션 모델은 자연어 처리(NLP) 분야에서 가장 두드러진 활약을 보이며, 언어 관련 작업의 방식을 근본적으로 변화시켰다.
- 텍스트 생성: 시, 스크립트, 기사, 마케팅 문구 등 다양한 형식의 창의적인 텍스트를 생성할 수 있다. 챗봇 및 자동화된 콘텐츠 생성에 활용된다.
- 번역 및 요약: 여러 언어 간의 원활한 번역을 지원하며, 긴 문서를 간결하게 요약하여 핵심 정보를 추출하는 데 탁월하다.
- 질문 답변 및 감성 분석: 사용자 질문에 대한 정확한 답변을 제공하고, 텍스트의 감성적 톤을 이해하는 감성 분석에도 활용된다.
- 챗봇 및 가상 비서: 인간과 유사한 대화 능력을 바탕으로 고객 지원 챗봇, 가상 비서 등 인간-컴퓨터 상호작용을 개선한다.
4.2. 컴퓨터 비전 및 시각적 이해
파운데이션 모델은 컴퓨터 비전 분야에서도 이미지 생성, 객체 인식 등 시각 데이터 처리 능력을 혁신하고 있다.
- 이미지 생성: DALL-E, Stable Diffusion, Imagen과 같은 모델들은 텍스트 설명으로부터 사실적인 이미지를 생성하는 능력을 보여준다.
- 객체 인식 및 분류: 보안 카메라의 객체 감지, 자율 주행 차량의 보행자 및 차량 식별, 의료 영상 분석 등에서 활용된다. Grounding DINO는 객체 감지에, SAM(Segment Anything Model)은 이미지 분할에 사용된다. CLIP(Contrastive Language–Image Pre-training)은 이미지 분류 및 이미지 비교에 활용된다.
- 비디오 분석: 비디오에서 장면 변화를 식별하거나, 비디오 편집 및 사실적인 특수 효과 생성에도 응용될 수 있다.
- 멀티모달 이해: CLIP과 같은 모델은 이미지와 텍스트 간의 관계를 이해하고 정렬하여 이미지-텍스트 검색 및 개방형 객체 감지와 같은 다재다능한 애플리케이션을 가능하게 한다.
4.3. 코드 생성 및 개발 지원
소프트웨어 개발 분야에서 파운데이션 모델은 개발 생산성을 향상시키는 강력한 도구로 자리 잡고 있다.
- 자동 코드 생성: 자연어 입력을 기반으로 다양한 프로그래밍 언어로 컴퓨터 코드를 자동으로 생성한다. GitHub Copilot(Codex 모델 기반), Anthropic의 Claude Code, Google의 Codey, IBM의 Granite Code 모델 등이 대표적인 예시이다.
- 디버깅 및 리팩토링: 생성된 코드의 오류를 평가하고 디버깅하며, 기존 코드의 리팩토링을 지원하여 코드 품질을 향상시킨다.
- 개발 보조 및 에이전트 지원: 개발자가 복잡한 프로그래밍 작업을 수행할 때 다단계 에이전트(agentic) 지원을 제공하여 개발 과정을 보조한다. Apple의 Foundation Models 프레임워크는 Swift 데이터 구조를 생성하는 데 활용될 수 있다.
- 자연어-SQL 변환: 자연어 쿼리를 SQL 코드로 변환하여 데이터 분석 및 관리 작업을 간소화한다.
- 미래 전망: GitHub CEO 토마스 돔케(Thomas Dohmke)는 향후 5년 내에 소프트웨어 코드의 80%가 AI에 의해 작성될 것이라고 예측했다.
4.4. 기타 응용 분야
파운데이션 모델의 활용 범위는 언어와 비전을 넘어 다양한 분야로 확장되고 있다.
- 음성 인식 및 합성: 음성 데이터를 텍스트로 변환하거나, 텍스트를 자연스러운 음성으로 합성하는 데 활용된다.
- 인간-컴퓨터 상호작용: 생성형 AI 모델은 인간의 입력을 통해 학습하고 예측을 개선하며, 인간의 의사 결정을 지원하는 데 활용될 수 있다. 임상 진단, 의사 결정 지원 시스템, 분석 등이 잠재적 용도이다.
- 과학 연구: 천문학, 방사선학, 유전체학, 화학, 시계열 예측, 수학 등 다양한 과학 분야에서 방대한 데이터셋을 분석하여 전통적인 방법으로는 놓칠 수 있는 패턴과 관계를 식별함으로써 과학적 발견을 가속화할 수 있다.
- 로봇 제어: RT-2와 같은 모델은 로봇 제어 분야에도 적용되어 로봇이 복잡한 작업을 수행하도록 돕는다.
5. 파운데이션 모델의 현재 동향 및 과제
파운데이션 모델은 빠르게 발전하고 있지만, 동시에 기술적, 윤리적, 사회적 측면에서 다양한 도전과제를 안고 있다.
5.1. 최신 발전 동향
파운데이션 모델 연구 및 개발은 현재 다음과 같은 주요 방향으로 진화하고 있다.
- 멀티모달 모델: 텍스트, 이미지, 오디오, 비디오 등 다양한 양식(modality)의 데이터를 동시에 처리하고 이해하는 멀티모달(multimodal) 모델의 개발이 활발하다. DALL-E(이미지), MusicGen(음악), LLark(음악), RT-2(로봇 공학) 등이 멀티모달 파운데이션 모델의 예시이다. 이는 AI가 더욱 풍부하고 다감각적인 경험을 제공할 수 있도록 한다.
- 효율적인 추론 기술 및 소형화 모델: 대규모 모델의 막대한 자원 소모 문제를 해결하기 위해, 더 작고, 빠르며, 저렴한 모델을 개발하여 더 넓은 범위에서 AI를 활용할 수 있도록 하는 연구가 진행 중이다.
- 추론 강화 (Reasoning Enhancement): 모델이 더 스마트하게 사고하고 복잡한 문제를 해결할 수 있도록 추론 능력을 강화하는 방향으로 발전하고 있다.
- 도구 사용 (Tool Use): AI가 웹 검색, 데이터베이스, 사용자 정의 도구 등 외부 도구와 시스템을 활용하는 방법을 학습하는 능력이 중요해지고 있다.
- 컨텍스트 길이 확장 (Context Length Expansion): AI가 더 긴 대화나 문서에서 더 많은 정보를 기억하고 활용할 수 있도록 컨텍스트 길이(context length)를 확장하는 연구가 진행 중이다.
- 자율 에이전트 (Autonomous Agents): AI가 독립적으로 또는 협력적으로 행동하며 외부 도구 및 시스템과 상호작용하는 자율 에이전트(autonomous agents) 개발이 주목받고 있다.
- 실시간 데이터 통합: 모델의 지식 단절(knowledge cut-off) 문제를 극복하고 최신 정보를 반영하기 위해 검색 기능을 통합하여 실시간 정보에 접근할 수 있도록 하는 노력이 이루어지고 있다.
5.2. 윤리적 고려사항 및 사회적 영향
파운데이션 모델의 강력한 능력은 사회에 긍정적인 영향을 미칠 수 있지만, 동시에 여러 윤리적, 사회적 문제를 야기할 수 있다.
- 편향 (Bias): 모델이 훈련된 데이터셋에 존재하는 편향이 모델의 출력에 반영되어 차별적이거나 불공정한 결과를 초래할 수 있다.
- 오정보 생성 및 환각 (Misinformation/Hallucination): 파운데이션 모델은 때때로 그럴듯하지만 사실과 다른 정보(환각, hallucination)를 생성할 수 있으며, 이는 오정보 확산으로 이어질 수 있다 [cite: 4, 5, 5.3].
- 보안 취약점: 대규모 모델의 복잡성은 새로운 보안 취약점을 발생시키고, 악의적인 목적으로 오용될 가능성을 내포한다.
- 저작권 문제: 방대한 인터넷 데이터로 훈련되는 과정에서 저작권이 있는 콘텐츠가 사용될 수 있으며, 이로 인해 생성된 콘텐츠의 저작권 침해 논란이 발생할 수 있다.
- 일자리 변화: 파운데이션 모델을 통한 자동화는 특정 직업군의 수요를 감소시키거나 변화시킬 수 있으며, 새로운 직업의 창출로 이어질 수도 있다.
- 규제 및 거버넌스: 이러한 문제들로 인해 각국 정부는 파운데이션 모델에 대한 규제 및 거버넌스 프레임워크를 마련하기 시작했다. 예를 들어, 미국은 AI의 안전하고 신뢰할 수 있는 개발 및 사용에 관한 행정 명령에서 파운데이션 모델을 정의하고 있으며, 유럽 연합의 EU AI Act와 영국의 경쟁시장청(CMA) 보고서에서도 파운데이션 모델에 대한 정의와 규제 논의가 이루어지고 있다.
- 개인 정보 보호: OpenAI와 Apple은 모델 훈련 시 사용자 개인 정보를 의도적으로 수집하지 않으며, 공개적으로 사용 가능한 인터넷 정보에서 개인 식별 정보(PII)를 필터링한다고 밝히고 있다.
5.3. 기술적 한계 및 해결 과제
파운데이션 모델은 놀라운 발전을 이루었지만, 여전히 여러 기술적 한계와 해결해야 할 과제를 안고 있다.
- 환각 (Hallucination) 문제: 모델이 사실과 다른 정보를 생성하는 환각 현상은 여전히 주요한 기술적 한계이다. 이를 줄이기 위해 모델을 기업의 자체 데이터에 ‘접지(grounding)’시키는 방법 등이 연구되고 있다.
- 막대한 자원 소모: 파운데이션 모델을 구축하는 데는 데이터 획득, 큐레이션, 처리 및 컴퓨팅 파워(GPU)에 수억 달러가 소요될 수 있을 정도로 막대한 자원이 필요하다. 훈련 과정만으로도 몇 주가 걸릴 수 있다. 이러한 자원 소모는 모델의 접근성과 지속 가능성을 저해하는 요인이 된다.
- 제어의 어려움: 대규모 모델의 복잡성으로 인해 모델이 의도한 대로 작동하고 인간의 가치에 부합하도록 제어하는 것이 어렵다.
- 데이터 병목 현상: 고품질의 방대한 훈련 데이터를 지속적으로 확보하고 처리하는 것은 여전히 중요한 과제이다. 데이터 수집, 전처리, 저장 효율성은 모델의 성능에 직접적인 영향을 미친다.
- 설명 가능성 (Explainability): 모델이 특정 결정을 내리거나 출력을 생성하는 이유를 인간이 이해하기 어려운 ‘블랙박스’ 문제는 여전히 남아있다. AI의 신뢰성과 책임성을 높이기 위해서는 설명 가능한 AI(XAI) 기술의 발전이 필수적이다.
6. 파운데이션 모델의 미래 전망
파운데이션 모델은 인공지능의 미래를 형성하고 인류 사회에 광범위한 영향을 미칠 잠재력을 가지고 있다. 기술 발전 방향과 범용 인공지능(AGI)으로의 발전 가능성, 그리고 사회 및 산업에 미칠 영향을 예측해 본다.
6.1. 기술 발전 방향
파운데이션 모델은 지속적인 연구 개발을 통해 더욱 강력하고 효율적인 방향으로 발전할 것으로 예상된다.
- 더욱 강력하고 범용적인 모델: 현재의 파운데이션 모델보다 훨씬 더 광범위한 기능을 갖추고 다양한 양식(modality)에 걸쳐 깊이 있는 이해를 제공하는 모델들이 등장할 것이다.
- 새로운 아키텍처 및 학습 방법: 현재 주류인 트랜스포머 아키텍처를 넘어서는 새로운 모델 아키텍처와 더 효율적인 학습 방법이 개발될 가능성이 있다. 예를 들어, 지능형 파운데이션 모델(Intelligence Foundation Model, IFM)은 언어, 비전 등 특정 도메인의 패턴 학습을 넘어 다양한 지능형 행동으로부터 직접 학습하여 지능의 근본적인 메커니즘을 습득하는 것을 목표로 하는 새로운 관점을 제시한다.
- 도메인별 특화 모델: 법률, 헬스케어와 같은 특정 도메인에 특화된 파운데이션 모델이 강력한 위치를 차지할 것으로 예상된다. 이는 해당 분야의 전문 지식과 결합하여 더욱 정확하고 신뢰할 수 있는 솔루션을 제공할 것이다.
- AI 인프라의 통합: 파운데이션 모델은 CRM(고객 관계 관리) 및 ERP(전사적 자원 관리) 시스템 내부에 보이지 않는 인프라로 통합되어, 기업 운영의 효율성을 조용히 혁신할 것으로 전망된다.
6.2. 범용 인공지능(AGI)으로의 발전 가능성
파운데이션 모델은 범용 인공지능(Artificial General Intelligence, AGI) 실현을 향한 중요한 발걸음으로 여겨진다. AGI는 인간이나 다른 동물이 수행할 수 있는 모든 지적 작업을 이해하거나 학습할 수 있는 가상의 지능형 에이전트를 의미한다.
- AGI로의 기여: 파운데이션 모델은 특정 작업에만 집중하는 협소 인공지능(Artificial Narrow Intelligence, ANI)을 넘어, 여러 작업을 수행하고 적응할 수 있는 능력을 보여주며 AGI로의 전환 가능성을 제시한다. 그들의 범용성과 전이 학습 능력은 AGI의 핵심 요소인 광범위한 지식과 추론 능력을 구축하는 데 기여할 수 있다.
- 현재의 한계: 하지만 AGI의 실현은 아직 멀리 떨어져 있는 목표이다. 현재의 파운데이션 모델은 여전히 특정 도메인이나 양식 내에서의 학습에 특화되어 있으며, 인간 수준의 일반화, 추론, 적응 학습 능력을 완전히 갖추지는 못했다.
- 새로운 접근 방식: 지능형 파운데이션 모델(IFM)과 같은 새로운 연구는 언어, 비전 등 특정 도메인의 패턴 학습을 넘어, 다양한 지능형 행동으로부터 직접 학습하여 지능의 근본적인 메커니즘을 습득하는 것을 목표로 한다. 이는 생물학적 신경 시스템의 동역학을 모방하는 새로운 네트워크 아키텍처와 학습 목표를 통해 AGI에 접근하려는 시도이다.
6.3. 사회 및 산업에 미칠 영향
파운데이션 모델은 사회 전반과 다양한 산업 분야에 광범위한 영향을 미칠 것으로 예상된다.
- 산업 혁신 가속화: 헬스케어, 법률, 교육, 전자상거래, 자율 주행, 농업 등 거의 모든 산업 분야에서 파운데이션 모델을 활용한 혁신이 가속화될 것이다. 이는 제품 개발 시간 단축, 운영 효율성 증대, 새로운 서비스 창출로 이어진다.
- 생산성 향상 및 비용 절감: 파운데이션 모델은 반복적이고 창의적인 작업을 자동화하여 생산성을 크게 향상시키고, 기업이 새로운 AI 애플리케이션을 더 빠르고 저렴하게 개발할 수 있도록 돕는다.
- 새로운 직업 창출 및 직무 변화: 자동화로 인해 일부 직업이 사라지거나 변화하는 동시에, AI 모델을 개발, 관리, 활용하는 새로운 유형의 직업이 창출될 것이다. AI와의 협업 능력이 미래 인력의 중요한 역량이 될 것이다.
- 초개인화 경험 제공: 파운데이션 모델은 고객에게 초개인화된 제품, 서비스, 콘텐츠를 제공함으로써 고객 만족도를 높이고 기업의 수익 증대로 이어질 수 있다.
- 사회 구조 변화 및 윤리적 책임 강화: AI 시스템이 사회의 일상 업무와 의사 결정에 더욱 깊이 통합되면서 사회 구조 전반에 걸친 변화가 예상된다. 이에 따라 AI의 책임감 있는 개발 및 사용, 윤리적 고려사항 준수, 그리고 법적 규제 준수의 중요성이 더욱 강조될 것이다.
참고 문헌
- Foundation model – Wikipedia. https://en.wikipedia.org/wiki/Foundation_model
- What are Foundation Models? – Generative AI – AWS. https://aws.amazon.com/what-is/foundation-models/
- Use Cases for Computer Vision Foundation Models – Roboflow Blog (2023-08-29). https://blog.roboflow.com/computer-vision-foundation-models/
- What are foundation models? | Google Cloud. https://cloud.google.com/use-cases/foundation-models
- What are the key characteristics of foundational models? – Deepchecks. https://deepchecks.com/glossary/foundation-models-characteristics/
- What are foundation models for AI? – Red Hat (2025-12-02). https://www.redhat.com/en/topics/ai/what-are-foundation-models
- What are Foundation Models? (Plus Types and Use Cases) – Couchbase (2024-04-29). https://www.couchbase.com/blog/what-are-foundation-models/
- What Are Foundation Models? – IBM. https://www.ibm.com/topics/foundation-models
- Foundation Models: Powering the AI Revolution – Viso Suite (2024-09-20). https://viso.ai/deep-learning/foundation-models/
- The power of foundation models – Toloka AI (2023-10-26). https://toloka.ai/blog/the-power-of-foundation-models/
- [기고] 무엇이 파운데이션 모델을 특별하게 하는가 – AI타임스 (2024-10-09). https://www.aitimes.com/news/articleView.html?idxno=159359
- 파운데이션 모델이란?- 생성형 AI의 파운데이션 모델 설명 – AWS. https://aws.amazon.com/ko/what-is/foundation-models/
- 파운데이션 모델이란 무엇인가요? – Google Cloud. https://cloud.google.com/use-cases/foundation-models?hl=ko
- Generative AI & Foundation Models: A Look into the Future – Intel Capital. https://www.intelcapital.com/generative-ai-foundation-models-a-look-into-the-future/
- 파운데이션 모델이란 무엇인가요? – IBM. https://www.ibm.com/kr-ko/topics/foundation-models
- Foundation Models: The Benefits, Risks, and Applications – V7 Go (2023-08-31). https://www.v7labs.com/blog/foundation-models
- The Foundation Models Reshaping Computer Vision | by The Tenyks Blogger | Medium (2023-10-26). https://medium.com/@thetenyksblogger/the-foundation-models-reshaping-computer-vision-d064ddb44322
- How foundation models streamline AI development? | by Agihx – Medium (2024-06-03). https://medium.com/@agihx/how-foundation-models-streamline-ai-development-5f7202359483
- How Have Foundation Models Redefined Computer Vision Using AI? – Encord (2024-04-30). https://encord.com/blog/foundation-models-computer-vision/
- From Pixels To Perception: The Impact Of Foundation Models For Vision – Forrester (2024-09-06). https://www.forrester.com/blogs/from-pixels-to-perception-the-impact-of-foundation-models-for-vision/
- 파운데이션 모델 – 위키백과, 우리 모두의 백과사전. https://ko.wikipedia.org/wiki/%ED%8C%8C%EC%9A%B4%EB%8D%B0%EC%9D%B4%EC%85%98_%EB%AA%A8%EB%8D%B8
- Foundational Model vs. LLM: Understanding the Differences | by Novita AI – Medium (2024-05-13). https://medium.com/@novita.ai/foundational-model-vs-llm-understanding-the-differences-534d70b5d55b
- Foundation Models: Scaling Large Language Models | by Luhui Hu – Towards AI (2023-03-31). https://towardsai.net/p/foundation-models-scaling-large-language-models
- Foundation Model vs LLM: Key Differences Explained – Openxcell (2025-01-20). https://www.openxcell.com/blog/foundation-model-vs-llm/
- 3 Ways to Adapt a Foundation Model to Fit Your Specific Needs – Kili Technology. https://www.kili-technology.com/blog/3-ways-to-adapt-a-foundation-model-to-fit-your-specific-needs
- Foundation Models: The Building Blocks of Next-Gen AI (2023-05-24). https://www.kloudportal.com/insights/foundation-models-the-building-blocks-of-next-gen-ai/
- How Are Foundation Models Fuelling the Future of AI? – SG Analytics (2022-06). https://www.sganalytics.com/blog/how-are-foundation-models-fuelling-the-future-of-ai/
- What Are Generative AI, Large Language Models, and Foundation Models? | Center for Security and Emerging Technology – CSET Georgetown (2023-05-12). https://cset.georgetown.edu/article/what-are-generative-ai-large-language-models-and-foundation-models/
- Scaling Foundation Models: Challenges in Memory, Compute, and Efficiency | Shieldbase. https://shieldbase.io/blog/scaling-foundation-models-challenges-in-memory-compute-and-efficiency
- Foundation Models for Source Code | Niklas Heidloff (2023-02-01). https://heidloff.net/article/foundation-models-for-source-code/
- GLM-4.5: Reasoning, Coding, and Agentic Abililties – Z.ai Chat (2025-07-28). https://z.ai/blog/glm-4-5-reasoning-coding-and-agentic-abililties
- AI Foundation Models : What’s Next for 2025 and Beyond – YouTube (2025-02-05). https://www.youtube.com/watch?v=UFeUOZJSwFY
- How to Ensure Sufficient Data for AI Foundation Models – Huawei BLOG (2024-01-08). https://blog.huawei.com/2024/01/08/how-to-ensure-sufficient-data-for-ai-foundation-models/
- The New Age of AI: Harnessing Foundation Models with Self-Supervised Learning, Fine-Tuning, and More | by buse köse | Medium (2024-11-14). https://medium.com/@busekose/the-new-age-of-ai-harnessing-foundation-models-with-self-supervised-learning-fine-tuning-and-more-a53d30829878
- How ChatGPT and our foundation models are developed – OpenAI Help Center. https://help.openai.com/en/articles/8672159-how-chatgpt-and-our-foundation-models-are-developed
- Scalability and Efficiency of Foundation Models for Big Data Analytics – ResearchGate (2025-01-25). https://www.researchgate.net/publication/380720888_Scalability_and_Efficiency_of_Foundation_Models_for_Big_Data_Analytics
- Foundation Models | Apple Developer Documentation. https://developer.apple.com/documentation/foundationmodels/
- Self-Supervised Learning and Foundation models | by Anushka Chathuranga | Medium (2024-02-15). https://medium.com/@anushka-chathuranga/self-supervised-learning-and-foundation-models-31a72d1f7743
- Introducing Apple’s On-Device and Server Foundation Models (2024-06-10). https://machinelearning.apple.com/research/introducing-apple-foundation-models
- Exploring the Foundation Models framework – Create with Swift (2025-08-07). https://createwithswift.com/exploring-the-foundation-models-framework/
- Stanford AI Experts Predict What Will Happen in 2026 (2025-12-15). https://hai.stanford.edu/news/stanford-ai-experts-predict-what-will-happen-2026
- AI at Scale: How Foundation Models Are Reshaping Enterprise Tech – Premier IT Data Engineering Consulting Partner – KloudPortal (2025-08-05). https://www.kloudportal.com/insights/ai-at-scale-how-foundation-models-are-reshaping-enterprise-tech/
- Numbers Station: Integrating Foundation Models into the Modern Data Stack: Challenges and Solutions – ZenML LLMOps Database. https://zenml.io/blog/numbers-station-integrating-foundation-models-into-the-modern-data-stack-challenges-and-solutions
- [2511.10119] Intelligence Foundation Model: A New Perspective to Approach Artificial General Intelligence – arXiv (2025-11-13). https://arxiv.org/abs/2511.10119
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
기사 제보
제보하실 내용이 있으시면 techmore.main@gmail.com으로 연락주세요.


