OpenAI
OpenAI
OpenAI: 인류를 위한 인공지능의 비전과 혁신
목차
OpenAI 개요 및 설립 배경
OpenAI의 역사 및 발전 과정
핵심 기술 및 인공지능 모델
3.1. 언어 모델 (GPT 시리즈)
3.2. 멀티모달 및 기타 모델
주요 활용 사례 및 응용 서비스
4.1. 텍스트 및 대화형 AI (ChatGPT)
4.2. 이미지 및 비디오 생성 AI (DALL·E, Sora)
4.3. 음성 및 기타 응용 서비스
현재 동향 및 주요 이슈
미래 전망
1. OpenAI 개요 및 설립 배경
OpenAI는 인류 전체에 이익이 되는 안전한 범용 인공지능(AGI, Artificial General Intelligence)을 개발하는 것을 목표로 2015년 12월 8일 설립된 미국의 인공지능 연구 기업이다. 일론 머스크(Elon Musk), 샘 알트만(Sam Altman), 그렉 브록만(Greg Brockman), 일리야 수츠케버(Ilya Sutskever) 등이 공동 설립을 주도했으며, 초기에는 구글과 같은 폐쇄형 인공지능 개발에 대항하여 인공지능 기술을 오픈 소스로 공개하겠다는 비영리 단체로 시작하였다. 설립 당시 아마존 웹 서비스, 인포시스 등으로부터 총 10억 달러의 기부금을 약속받으며 막대한 자금을 확보하였다.
OpenAI의 설립 동기는 인공지능의 부주의한 사용과 남용으로 발생할 수 있는 재앙적 위험을 예방하고, 인류에게 유익한 방향으로 인공지능을 발전시키기 위함이었다. 그러나 AGI 개발에 필요한 막대한 자본과 인프라 비용을 감당하기 위해 2019년 비영리 연구소에서 '캡드-이익(capped-profit)' 구조의 영리 법인인 OpenAI LP(Limited Partnership)로 전환하였다. 이 전환은 투자자에게 수익률 상한선을 두어 공익적 목표를 유지하면서도 자본을 유치할 수 있도록 설계되었으며, 마이크로소프트와의 대규모 파트너십을 통해 연구 자금을 조달하는 계기가 되었다. 2025년 10월에는 비영리 재단이 영리 법인을 감독하는 이중 체계를 갖춘 공익 법인(Public Benefit Corporation, PBC)으로 구조 개편을 마무리하였다.
2. OpenAI의 역사 및 발전 과정
OpenAI는 설립 이후 인공지능 연구 및 개발 분야에서 수많은 이정표를 세우며 빠르게 성장하였다.
2015년 12월: 일론 머스크, 샘 알트만 등을 주축으로 OpenAI 설립.
2016년 4월: 강화 학습 연구를 위한 오픈 소스 툴킷인 'OpenAI Gym'을 출시하여 인공지능 개발의 문턱을 낮추었다.
2017년 8월: 인기 비디오 게임 '도타 2(Dota 2)'에서 인간 프로 선수와 1대1 대결을 펼쳐 승리하는 AI를 시연하며 인공지능의 강력한 학습 능력을 선보였다.
2018년: 대규모 언어 모델의 시대를 연 'GPT-1(Generative Pre-trained Transformer 1)'을 발표하며 자연어 처리 분야에 혁신을 가져왔다.
2019년: 비영리에서 '캡드-이익' 영리 법인으로 전환하고, 마이크로소프트로부터 대규모 투자를 유치하며 전략적 파트너십을 구축하였다.
2021년: 텍스트 설명을 기반으로 사실적인 이미지를 생성하는 멀티모달 모델 'DALL·E'를 공개하며 생성형 AI의 가능성을 확장하였다.
2022년 11월: 대화형 인공지능 챗봇 'ChatGPT'를 출시하여 전 세계적인 센세이션을 일으켰으며, 인공지능 기술의 대중화를 이끌었다. ChatGPT는 출시 9개월 만에 포춘 500대 기업의 80% 이상이 도입하는 등 빠르게 확산되었다.
2023년: 텍스트와 이미지를 동시에 이해하고 생성하는 멀티모달 모델 'GPT-4'를 발표하며 성능을 더욱 고도화하였다. 같은 해 11월 샘 알트만 CEO 축출 사태가 발생했으나, 일주일 만에 복귀하며 경영 안정화를 꾀하였다.
2024년: 텍스트를 통해 고품질 비디오를 생성하는 'Sora'를 공개하며 영상 생성 AI 분야의 새로운 지평을 열었다. 또한, 일론 머스크가 OpenAI를 상대로 초기 설립 목적 위반을 주장하며 소송을 제기하는 등 법적 분쟁에 휘말리기도 했다.
2025년: 'GPT-5' 및 'GPT-5.1'을 출시하며 언어 모델의 대화 품질과 추론 능력을 더욱 향상시켰다. 또한, 추론형 모델인 o3, o4-mini 등을 공개하며 복잡한 문제 해결 능력을 강화하였다. 이와 함께 대규모 데이터센터 확장을 위한 '스타게이트 프로젝트'를 본격화하며 AI 인프라 구축에 박차를 가하고 있다.
3. 핵심 기술 및 인공지능 모델
OpenAI는 다양한 인공지능 모델을 개발하여 기술 혁신을 이끌고 있으며, 특히 GPT 시리즈와 멀티모달 모델들은 OpenAI 기술력의 핵심을 이룬다.
3.1. 언어 모델 (GPT 시리즈)
GPT(Generative Pre-trained Transformer) 시리즈는 OpenAI의 대표적인 언어 모델로, 방대한 텍스트 데이터를 사전 학습하여 인간과 유사한 텍스트를 생성하고 이해하는 능력을 갖추고 있다.
GPT-1 (2018년): 트랜스포머 아키텍처를 기반으로 한 최초의 생성형 사전 학습 모델로, 자연어 처리 분야의 가능성을 제시하였다.
GPT-2 (2019년): GPT-1보다 훨씬 큰 규모의 데이터를 학습하여 더욱 자연스러운 텍스트 생성 능력을 보여주었으며, 특정 작업에 대한 미세 조정 없이도 높은 성능을 달성하는 제로샷(zero-shot) 학습의 잠재력을 입증하였다.
GPT-3 (2020년): 1,750억 개의 파라미터를 가진 거대 모델로, 다양한 언어 작업을 수행하는 데 뛰어난 성능을 보였다. 소수의 예시만으로도 새로운 작업을 학습하는 퓨샷(few-shot) 학습 능력을 통해 범용성을 크게 높였다.
GPT-4 (2023년): 텍스트뿐만 아니라 이미지 입력도 처리할 수 있는 멀티모달 능력을 갖추었으며, 더욱 정확하고 창의적인 응답을 제공한다. 복잡한 추론과 문제 해결 능력에서 이전 모델들을 뛰어넘는 성능을 보여주었다.
GPT-5 (2025년): 한국어 성능 및 실무 활용성이 강화되었으며, AGI로 향하는 중요한 단계로 평가받고 있다.
GPT-5.1 (2025년 11월): GPT-5의 업그레이드 버전으로, 대화 품질 향상과 사용자 맞춤 기능 강화가 주된 특징이다. 특히 '적응형 추론(adaptive reasoning)' 기능을 통해 쿼리의 복잡성을 실시간으로 평가하고 사고 시간을 조절하여 어려운 질문에는 충분히 생각하고 간단한 질문에는 빠르게 답하는 방식으로 작동한다. 또한, '향상된 지시 준수(enhanced instruction following)' 기능을 통해 사용자의 지시를 더 정확히 따르며, 응답 스타일을 '전문가형(Professional)', '솔직형(Candid)', '개성형(Quirky)' 등으로 세밀하게 조정할 수 있는 '스타일 프리셋' 기능을 제공한다. 이는 GPT-5 출시 초기의 사용자 피드백을 반영하여 모델을 더욱 따뜻하고 지능적이며 지시에 충실하게 만든 결과이다.
3.2. 멀티모달 및 기타 모델
OpenAI는 언어 모델 외에도 다양한 인공지능 모델을 개발하여 여러 분야에서 혁신을 이끌고 있다.
Whisper: 대규모 오디오 데이터를 학습하여 다양한 언어의 음성을 텍스트로 정확하게 변환하는 음성 인식 모델이다. 노이즈가 있는 환경에서도 뛰어난 성능을 발휘한다.
Codex: 자연어 명령을 코드로 변환하는 모델로, 프로그래머의 생산성을 크게 향상시킨다. GitHub Copilot의 기반 기술로 활용되고 있다.
DALL·E: 텍스트 프롬프트(명령어)를 통해 사실적이거나 예술적인 이미지를 생성하는 모델이다. 이미지 생성의 새로운 가능성을 열었으며, 창의적인 콘텐츠 제작에 활용된다.
Sora: 텍스트 프롬프트를 기반으로 고품질의 사실적인 비디오를 생성하는 모델이다. 복잡한 장면과 다양한 캐릭터, 특정 움직임을 포함하는 비디오를 만들 수 있어 영화, 광고 등 영상 콘텐츠 제작에 혁신을 가져올 것으로 기대된다.
o1, o3, o4 시리즈 (추론형 모델): 2025년 4월에 공식 발표된 o3와 o4-mini 모델은 단순 텍스트 생성을 넘어 "생각하는 AI"를 지향하는 새로운 세대의 추론 모델이다. 이 모델들은 복잡한 작업을 논리적으로 추론하고 해결하는 데 특화되어 있으며, '사고의 연쇄(Chain of Thought)' 추론 기법을 모델 내부에 직접 통합하여 문제를 여러 단계로 나누어 해결한다.
o3: 가장 크고 유능한 o-시리즈 모델로, 복잡한 분석 및 멀티스텝 작업에 최적화되어 코딩, 수학, 과학, 시각 분석 등 여러 영역에서 최첨단 성능을 달성한다.
o3-pro: o3 모델의 한 버전으로, 더 오랜 시간 동안 사고하여 더욱 정교한 추론을 수행한다.
o4-mini: 속도와 비용 효율성에 최적화된 소형 추론 모델로, 빠른 응답이 필요한 자동화 작업에 적합하다. 특히 수학, 코딩, 시각 문제 해결 능력이 뛰어나다.
o4-mini-high: o4-mini 모델의 한 버전으로, o4-mini보다 더 오랜 시간 사고하여 성능을 향상시킨다.
이 추론 모델들은 멀티모달 추론 능력과 자동 도구 활용 능력을 갖추고 있어, 사용자가 질문할 때 필요한 도구(웹 검색, 파일 분석, 코드 실행 등)를 스스로 판단하고 실행할 수 있다.
4. 주요 활용 사례 및 응용 서비스
OpenAI의 인공지능 모델은 다양한 산업 분야와 실생활에 적용되어 혁신적인 변화를 가져오고 있다.
4.1. 텍스트 및 대화형 AI (ChatGPT)
ChatGPT는 OpenAI의 GPT 시리즈를 기반으로 한 대화형 인공지능 서비스로, 사용자들의 질문에 인간처럼 자연스럽게 답변하는 능력을 갖추고 있다.
기능: 정보 검색, 콘텐츠 생성(기사, 시, 코드 등), 번역, 요약, 아이디어 브레인스토밍, 복잡한 문제 해결 지원 등 광범위한 기능을 제공한다.
활용 분야:
고객 지원: 기업들은 ChatGPT를 활용하여 챗봇을 구축하고 고객 문의에 24시간 응대하며, 상담원의 업무 부담을 줄이고 고객 만족도를 높인다.
콘텐츠 생성: 마케팅, 저널리즘, 교육 등 다양한 분야에서 콘텐츠 초안 작성, 아이디어 구상, 보고서 요약 등에 활용되어 생산성을 향상시킨다.
교육: 학생들은 학습 자료 요약, 질문 답변, 작문 연습 등에 ChatGPT를 활용하여 학습 효율을 높일 수 있다.
소프트웨어 개발: 개발자들은 코드 생성, 디버깅, 문서화 등에 ChatGPT를 활용하여 개발 시간을 단축하고 오류를 줄인다.
ChatGPT Enterprise: 기업 고객을 위해 특별히 설계된 유료 서비스로, 데이터 보안 강화, 더 빠른 분석 및 응답 속도, 무제한 고급 데이터 분석 기능 등을 제공한다. 기업 내 직원들의 ChatGPT 사용을 관리할 수 있는 관리자 페이지도 함께 제공되어 내부 직원 인증 및 사용 통계 관리가 가능하다. OpenAI는 ChatGPT Enterprise를 통해 이미 100만 개 이상의 기업 고객을 확보했다고 밝혔다. 미국 연방 기관에는 챗GPT 엔터프라이즈를 1달러에 제공하며 AI 정부 시장 경쟁을 예고하기도 했다.
4.2. 이미지 및 비디오 생성 AI (DALL·E, Sora)
DALL·E와 Sora는 텍스트 프롬프트를 통해 시각적 콘텐츠를 생성하는 AI 모델로, 창의적인 콘텐츠 제작 분야에 혁신을 가져오고 있다.
DALL·E: 텍스트 설명을 기반으로 독창적인 이미지를 생성한다. 예를 들어, "우주복을 입은 강아지가 피자를 먹는 모습"과 같은 명령만으로도 다양한 스타일의 이미지를 만들어낼 수 있다. 이는 디자이너, 예술가, 마케터 등이 아이디어를 시각화하고 새로운 콘텐츠를 빠르게 제작하는 데 활용된다.
Sora: DALL·E의 비디오 버전으로, 텍스트 프롬프트만으로 최대 1분 길이의 사실적이고 창의적인 비디오를 생성한다. 이는 영화 제작, 광고, 게임 개발 등 다양한 분야에서 스토리보드 제작, 시각화, 특수 효과 구현 등에 활용되어 시각적 콘텐츠 제작의 새로운 가능성을 제시한다.
4.3. 음성 및 기타 응용 서비스
OpenAI는 텍스트 및 시각 콘텐츠 외에도 다양한 응용 소프트웨어와 서비스를 개발하여 인공지능의 적용 범위를 확장하고 있다.
Voice Engine (음성 생성): 짧은 오디오 샘플만으로도 특정 인물의 목소리를 복제하여 새로운 음성 콘텐츠를 생성하는 기술이다. 오디오북 제작, 개인화된 음성 비서, 장애인을 위한 음성 지원 등 다양한 분야에서 활용될 수 있다.
SearchGPT (인공지능 검색 엔진): 기존의 키워드 기반 검색을 넘어, 사용자의 질문 의도를 파악하고 대화형으로 정보를 제공하는 차세대 검색 엔진이다. 더 정확하고 맥락에 맞는 정보를 제공하여 검색 경험을 혁신할 것으로 기대된다.
Operator (인공지능 에이전트): 사용자의 복잡한 작업을 이해하고 여러 도구와 서비스를 연동하여 자동으로 처리하는 인공지능 에이전트이다. 예를 들어, "다음 주 회의 일정을 잡고 참석자들에게 알림을 보내줘"와 같은 명령을 수행할 수 있다.
Atlas (AI 브라우저): 인공지능 기능을 통합한 웹 브라우저로, 웹 콘텐츠 요약, 정보 추천, 개인화된 검색 경험 등을 제공하여 사용자의 웹 서핑 효율성을 높인다.
5. 현재 동향 및 주요 이슈
OpenAI는 급변하는 인공지능 산업의 최전선에서 다양한 동향과 이슈에 직면하고 있다.
GPT 스토어 운영: OpenAI는 사용자들이 자신만의 맞춤형 챗봇(GPTs)을 만들고 공유할 수 있는 'GPT 스토어'를 운영하고 있다. 이는 개발자와 사용자 커뮤니티의 참여를 유도하고, 챗GPT의 활용 범위를 더욱 넓히는 전략이다.
지배구조 변화: 2025년 10월, OpenAI는 비영리 재단이 영리 법인(OpenAI Group)을 소유하고 감독하는 이중 체계의 공익 법인(PBC)으로 구조 개편을 완료하였다. 이는 비영리 사명을 유지하면서도 막대한 자본 조달과 기업 인수를 통해 성장할 수 있는 유연성을 확보하기 위함이다. 마이크로소프트는 개편된 PBC 지분의 27%를 보유하게 되었으며, OpenAI 모델 및 제품의 지식재산권을 2032년까지 보유한다.
2023년 경영진 축출 사태: 2023년 11월, 샘 알트만 CEO가 이사회로부터 갑작스럽게 해고되는 초유의 사태가 발생했다. 이사회는 알트만이 "소통에 불성실했다"고 밝혔으나, 주요 원인은 알트만의 독단적인 리더십 방식과 AI 안전 문제에 대한 이사회와의 갈등 때문인 것으로 알려졌다. 일리야 수츠케버 수석 과학자가 임시 대표를 맡았으나, 수백 명의 직원이 알트만의 복귀를 요구하며 사임 위협을 하는 등 내부 혼란이 가중되었다. 결국 마이크로소프트의 중재와 직원들의 압력으로 알트만은 일주일 만에 CEO로 복귀하였다.
저작권 관련 소송: OpenAI는 챗GPT 학습 과정에서 저작권이 있는 콘텐츠를 무단으로 사용했다는 이유로 여러 언론사 및 작가들로부터 소송에 휘말리고 있다. 뉴욕타임스(NYT)와의 소송은 진행 중이며, 독일에서는 노래 가사 저작권 침해로 패소 판결을 받았으나 항소 가능성을 시사했다. 반면, 일부 뉴스 사이트(Raw Story, AlterNet)와의 소송에서는 원고들이 실제 피해를 입증하지 못했다는 이유로 승소하기도 했다. OpenAI는 AI의 데이터 학습이 저작권법이 허용하는 '공정 이용'에 해당한다고 주장하고 있다.
일론 머스크의 소송: 일론 머스크는 OpenAI가 초기 설립 목적이었던 '인류에게 이익이 되는 안전한 AGI 개발'이라는 비영리적 사명을 저버리고 상업적 이익을 추구하며 폐쇄형으로 운영되고 있다고 주장하며 2024년 2월 소송을 제기했다. 그는 OpenAI가 마이크로소프트와의 파트너십을 통해 부당 이득을 취하고 있다고 비판했으며, 이후 8월에 다시 소송을 재개했다. 또한, 2025년 11월에는 애플과 OpenAI의 파트너십이 반독점법을 위반한다고 주장하며 소송을 제기하기도 했다.
엔터프라이즈 시장 진출: OpenAI는 기업용 'ChatGPT Enterprise'를 출시하며 엔터프라이즈 시장 진출에 주력하고 있다. 이는 기업 고객의 데이터 보안 요구를 충족시키고, 대규모 조직에서 AI를 효율적으로 활용할 수 있도록 지원하기 위함이다.
데이터센터 확장 및 대규모 파트너십: OpenAI는 AI 인프라 프로젝트인 '스타게이트(Stargate)'를 통해 미국 내 5개 신규 데이터센터를 구축할 계획이며, 총 5,000억 달러(약 688조 원) 규모의 투자를 진행하고 있다. 오라클, 소프트뱅크 등과의 대규모 파트너십을 통해 7기가와트(GW) 이상의 컴퓨팅 용량을 확보하고, 2025년 말까지 10GW 달성을 목표로 하고 있다. 이는 AI 모델 학습 및 운영에 필요한 막대한 컴퓨팅 자원을 확보하기 위한 전략이다.
6. 미래 전망
OpenAI는 인공지능 기술 발전의 최전선에서 인류의 미래를 바꿀 잠재력을 가진 기업으로 평가받고 있다.
샘 알트만 CEO는 인공지능이 트랜지스터 발명에 비견될 만한 근본적인 기술 혁신이며, "지능이 미터로 측정하기에는 너무 저렴해지는(intelligence too cheap to meter)" 미래를 가져올 것이라고 확신한다. 그는 OpenAI가 2026년까지 세상에 새로운 통찰력을 도출할 수 있는 AI 시스템, 즉 AGI 개발에 상당히 근접했다고 주장하며, AI가 현대의 일자리, 에너지, 사회계약 개념을 근본적으로 바꿀 것이라고 내다보고 있다.
OpenAI는 가까운 미래에 AI가 코딩 업무의 대부분을 자동화할 것이며, 진정한 혁신은 AI가 스스로 목표를 설정하고 독립적으로 업무를 수행할 수 있는 '에이전틱 코딩(agentic coding)'이 실현될 때 일어날 것이라고 예측한다. 또한, 다양한 AI 서비스를 하나의 통합된 구독형 패키지(Consumer Bundle)로 제공하여 단순히 ChatGPT와 같은 인기 서비스뿐만 아니라, 전문가를 위한 고성능 프리미엄 AI 모델이나 연구용 고급 모델 등 다양한 계층적 제품군을 제공할 계획이다. 이는 단순한 연구 기관이나 API 제공자를 넘어 구글이나 애플과 같은 거대 기술 플랫폼으로 성장하려는 강한 의지를 보여준다.
OpenAI는 소비자 하드웨어 및 로봇 공학 분야로의 진출 가능성도 시사하고 있으며, AI 클라우드 제공업체로서의 비전도 가지고 있다. 이는 AI 기술을 다양한 형태로 실생활에 통합하고, AI 인프라를 통해 전 세계에 컴퓨팅 파워를 제공하겠다는 전략으로 해석될 수 있다.
그러나 이러한 비전과 함께 AI의 잠재적 위험성, 윤리적 문제, 그리고 막대한 에너지 및 자원 소비에 대한 도전 과제도 안고 있다. OpenAI는 안전하고 윤리적인 AI 개발을 강조하며, 이러한 도전 과제를 해결하고 인류 전체의 이익을 위한 AGI 개발이라는 궁극적인 목표를 달성하기 위해 지속적으로 노력할 것이다.
참고 문헌
전문가형,개성형말투 추가... 오픈AIGPT-5.1` 공개 - 디지털데일리 (2025-11-13).
[2] Open AI에 소송 제기한 일론 머스크, 그들의 오랜 관계 - 지식창고 (2024-03-28).
[3] GPT-5.1, 적응형 추론으로 대화·작업 성능 전면 업그레이드 - 지티티코리아 (2025-11-13).
[4] 오픈AI - 위키백과, 우리 모두의 백과사전.
[5] 샘 알트만의 인공지능 미래 비전 - 브런치.
[6] 전세계가 놀란 쿠데타, 여인의 변심 때문에 실패?...비밀 밝혀진 오픈AI 축출 사건 - 매일경제 (2025-03-30).
[7] 일론 머스크, 오픈AI 상대로 소송 재개...공익 배반 주장 - 인공지능신문 (2024-08-06).
[8] GPT-5.1 출시…"EQ 감성 더 늘었다" 유료 사용자 먼저 - 디지털투데이 (DigitalToday) (2025-11-13).
[9] 샘 알트만이 그리는 OpenAI의 미래 – 서비스, BM, AGI에 대한 전략 - 이바닥늬우스 (2025-03-29).
[10] 오픈AI, 일부 뉴스 사이트와 저작권 침해 소송서 승소 - AI타임스 (2024-11-09).
[11] 샘 알트먼, “AI가 바꿀 미래와 그 대가” – OpenAI의 비전과 현실 : 테크브루 뉴스 | NEWS (2025-06-12).
[12] 챗GPT, GPT-5.1로 업데이트… 오픈AI “더 똑똑하고 친근한 챗GPT로 진화” - AI 매터스 (2025-11-13).
[13] 오픈AI, 일부 美 언론사와 '저작권 침해' 소송서 승소 - 연합뉴스 (2024-11-09).
[14] [에디터픽] "최악의 경우 인류 멸종 수준 위협" …머스크, 오픈AI·올트먼에 소송하는 이유는? / YTN - YouTube (2024-08-07).
[15] Open AI - 런모어(Learnmore).
[16] GPT-5.1 이란? 모두가 주목하는 이유 - Apidog (2025-11-13).
[17] 오픈AI, 독일에서 노래 가사 저작권 소송 패소...항소 시사 / YTN - YouTube (2025-11-12).
[18] OpenAI, 5개 데이터센터에 5천억 달러 투자 계획 - 머니터링 (2025-09-23).
[19] OpenAI 샘 알트만 축출의 10시간 진실: 이사회 내부 고발과 리더십 갈등의 전말 (2025-11-07).
[20] OpenAI가 뉴스 웹사이트들이 제기한 저작권 소송에서 승소하며 주요 법적 승리를 거두다 (2024-11-08).
[21] OpenAI - 나무위키.
[22] [AI넷] [샘 알트먼 "OpenAI, 연간 매출 200억 달러 돌파... 2030년까지 수천억 달러로 성장 전망”] 향후 8년간 약 1조 4천억 달러 규모의 데이터센터 약정을 고려 중이라고 밝혔다 (2025-11-09).
[23] OpenAI는 어떻게 성장했는가? - 메일리 (2023-03-08).
[24] OpenAI 영리 전환: 비영리에서 영리 구조로의 전환이 의미하는 것 (2025-10-29).
[25] 오픈AI, 오라클과 연 3천억 달러 규모 스타게이트 데이터센터 계약 체결 - AI 매터스 (2025-07-23).
[26] 오픈AI의 운영 구조 변경 - 다투모 이밸 - 셀렉트스타 (2025-05-09).
[27] [AI넷] 유미포[뉴욕 타임즈 vs. OpenAI: 생성 AI의 저작권 논쟁 심화] 생성 AI 기술의 미래 (2025-01-17).
[28] 2025년 10월 샘 알트먼 인터뷰 & OpenAI DevDay 핵심 정리 [번역글] - GeekNews.
[29] 오픈AI·오라클·소프트뱅크, 5개 신규 AI 데이터센터 건설…5000억 달러 규모 '스타게이트 프로젝트' 본격화 - MS TODAY (2025-09-24).
[30] OpenAI 대표 샘 알트만의 5가지 논란과 챗GPT 54조 투자유치 - Re:catch (2024-07-23).
[31] What are OpenAI o3 and o4? - Zapier (2025-06-16).
[32] 1400조원 블록버스터 주식이 찾아온다…세계 최대 IPO 기반 마련한 오픈AI [뉴스 쉽게보기] (2025-11-07).
[33] 텍사스 법원, 머스크의 애플, OpenAI 상대 반독점 소송 인정 - 인베스팅닷컴 (2025-11-13).
[34] 일론 머스크와 오픈AI의 갈등:상업화와 윤리적 논란 - 飞书文档.
[35] 오픈AI, 영리법인 관할 형태로 전환 추진 - 전자신문 (2024-09-26).
[36] OpenAI의 ChatGPT 엔터프라이즈: 가격, 혜택 및 보안 - Cody.
[37] OpenAI, Oracle, SoftBank, 다섯 개의 신규 AI 데이터 센터 부지로 Stargate 확대 (2025-09-23).
[38] 오픈AI, 기업용 '챗GPT 엔터프라이즈' 내놨다...MS와 경쟁하나 - 조선일보 (2023-08-29).
[39] OpenAI, Broadcom과의 파트너십을 발표하여 10GW의 맞춤형 AI 칩 배포로 Broadcom 주가 급등!
[40] OpenAI o3 and o4 explained: Everything you need to know - TechTarget (2025-06-13).
[41] OpenAI, "가장 똑똑한 모델" o3·o4-mini 출시 - 곰곰히 생각하는 하루 (2025-04-17).
[42] ChatGPT 모델 o1, o3, 4o 비교 분석 - 돌돌 (2025-02-17).
[43] 챗GPT 엔터프라이즈, 기업들 대상으로 한 유료 AI 서비스의 등장 - 보안뉴스 (2023-09-11).
[44] OpenAI (r196 판) - 나무위키.
[45] OpenAI, o3 와 o4-mini 모델 공개 - GeekNews.
[46] [AI넷] [OpenAI, 미국 연방 기관에 'ChatGPT 엔터프라이즈' 1달러 공급…AI 정부 시장 경쟁 예고]인공지능(AI) 기술 기업 오픈AI(OpenAI)가 미국 연방 기관에 '챗GPT 엔터프라이즈(ChatGPT Enterprise)'를 단돈 1달러에 제공한다 (2025-08-11).
가 FrontierMath 프로젝트에 비밀리에 자금을 지원하고 데이터 접근 권한을 가진 사실이 드러나면서, AI 커뮤니티 내에서 투명성과 공정성에 대한 논란이 뜨겁습니다. 이번 사건은 AI 발전과 윤리적 정합성 사이의 균형이 얼마나 중요한지를 보여줍니다.
FrontierMath는 AI 시스템의 고급 수학적 추론 능력을 평가하기 위해 Epoch AI와 수십 명의 수학자들이 협력해 만든 고난이도 수학 문제 벤치마크
벤치마크
벤치마크: 성능 측정의 기준점, 그 중요성과 활용법
목차
벤치마크의 개념
벤치마크의 종류
벤치마크의 활용
주요 벤치마크 툴
LLM 벤치마크의 이해
벤치마크 결과의 신뢰성
최신 벤치마크 트렌드
1. 벤치마크의 개념
1.1. 벤치마크의 정의와 목적
벤치마크(Benchmark)는 특정 시스템, 부품, 소프트웨어 또는 프로세스의 성능을 객관적으로 측정하고 비교하기 위한 표준화된 테스트 또는 기준점을 의미한다. 이는 주로 컴퓨터 하드웨어, 소프트웨어, 네트워크, 인공지능 모델 등 다양한 기술 분야에서 사용된다. 벤치마크의 주요 목적은 다음과 같다.
객관적인 성능 측정: 주관적인 판단이 아닌, 정량적인 데이터를 통해 성능을 평가한다. 예를 들어, 컴퓨터 프로세서의 벤치마크는 특정 계산 작업을 얼마나 빠르게 처리하는지 측정하여 수치화한다.
비교 가능성 제공: 서로 다른 제품이나 시스템 간의 성능을 공정하게 비교할 수 있는 기준을 제시한다. 이는 소비자가 제품을 선택하거나 개발자가 시스템을 개선할 때 중요한 정보를 제공한다.
개선점 식별: 벤치마크를 통해 현재 시스템의 약점이나 병목 현상을 파악하고, 이를 개선하기 위한 방향을 설정할 수 있다.
투명성 확보: 제조사나 개발자가 주장하는 성능을 제3자가 검증할 수 있는 수단을 제공하여 시장의 투명성을 높인다.
벤치마크라는 용어는 원래 측량에서 사용되던 기준점(표준 높이)에서 유래되었으며, 비즈니스 분야에서는 경쟁사나 업계 최고 수준의 기업과 비교하여 자신의 성과를 평가하고 개선하는 경영 기법을 의미하기도 한다. 기술 분야에서는 이와 유사하게 특정 기준에 대비하여 성능을 평가하는 행위를 지칭한다.
1.2. 벤치마크가 중요한 이유
벤치마크는 현대 기술 사회에서 다음과 같은 이유로 매우 중요한 역할을 한다.
소비자의 합리적인 선택 지원: 스마트폰, PC, 그래픽카드 등 다양한 제품군에서 벤치마크 점수는 소비자가 자신의 용도와 예산에 맞춰 최적의 제품을 선택하는 데 필수적인 정보를 제공한다. 예를 들어, 게이머는 높은 그래픽카드 벤치마크 점수를 가진 제품을 선호할 것이며, 사무용 사용자는 가격 대비 성능이 좋은 제품을 선택할 것이다.
개발 및 연구의 방향 제시: 하드웨어 제조사나 소프트웨어 개발사는 벤치마크 결과를 통해 자사 제품의 강점과 약점을 파악하고, 다음 세대 제품 개발이나 소프트웨어 최적화에 활용한다. 특정 벤치마크에서 낮은 점수를 받았다면, 해당 영역의 성능 개선에 집중할 수 있다.
산업 표준 및 혁신 촉진: 벤치마크는 특정 성능 기준을 제시하여 산업 전반의 기술 발전을 유도한다. 더 높은 벤치마크 점수를 얻기 위한 경쟁은 기술 혁신을 촉진하고, 이는 결국 더 나은 제품과 서비스로 이어진다.
투자 및 정책 결정의 근거: 기업은 벤치마크 결과를 바탕으로 기술 투자 방향을 결정하거나, 정부는 연구 개발 자금 지원 등의 정책을 수립할 때 벤치마크 데이터를 참고할 수 있다. 특히 인공지능 분야에서는 모델의 성능 벤치마크가 연구의 진행 상황과 잠재력을 보여주는 중요한 지표가 된다.
2. 벤치마크의 종류
벤치마크는 측정 대상과 목적에 따라 다양하게 분류될 수 있다.
2.1. 컴퓨팅 부품 성능 평가
가장 일반적인 벤치마크는 PC, 서버, 스마트폰 등 컴퓨팅 기기의 핵심 부품 성능을 평가하는 데 사용된다.
CPU (중앙 처리 장치) 벤치마크: 프로세서의 연산 능력, 멀티태스킹 성능 등을 측정한다. 대표적인 툴로는 Geekbench, Cinebench, PassMark 등이 있다. 이들은 복잡한 수학 연산, 데이터 압축, 이미지 렌더링 등 실제 사용 환경과 유사한 작업을 수행하여 CPU의 처리 속도를 평가한다.
GPU (그래픽 처리 장치) 벤치마크: 그래픽카드의 3D 렌더링 성능, 게임 프레임 처리 능력 등을 측정한다. 3DMark, FurMark, Unigine Heaven/Superposition 등이 널리 사용된다. 특히 게임 성능을 중요시하는 사용자들에게 GPU 벤치마크는 핵심적인 구매 기준이 된다.
RAM (메모리) 벤치마크: 메모리의 읽기/쓰기 속도, 대역폭, 지연 시간 등을 측정한다. AIDA64, MemTest86 등이 주로 사용되며, 시스템의 전반적인 반응 속도에 영향을 미친다.
저장장치 (SSD/HDD) 벤치마크: 솔리드 스테이트 드라이브(SSD)나 하드 디스크 드라이브(HDD)의 순차/랜덤 읽기/쓰기 속도, IOPS(초당 입출력 작업 수) 등을 평가한다. CrystalDiskMark, AS SSD Benchmark 등이 대표적이다. 이는 운영체제 부팅 속도나 대용량 파일 전송 속도에 직접적인 영향을 준다.
네트워크 벤치마크: 인터넷 연결 속도, Wi-Fi 신호 강도, 네트워크 지연 시간(Ping) 등을 측정한다. Speedtest.net, Fast.com 등 웹 기반 툴이 흔히 사용되며, 서버 간 네트워크 대역폭 테스트 등 전문적인 용도로도 활용된다.
배터리 벤치마크: 노트북이나 스마트폰의 배터리 지속 시간을 측정한다. 특정 작업을 반복 수행하거나 동영상 재생, 웹 브라우징 등 실제 사용 패턴을 시뮬레이션하여 배터리 효율성을 평가한다.
2.2. LLM 벤치마크와 일반 벤치마크의 차이점
최근 각광받는 대규모 언어 모델(LLM) 벤치마크는 기존 컴퓨팅 부품 벤치마크와는 다른 특성을 보인다.
측정 대상의 복잡성: 일반 컴퓨팅 벤치마크가 주로 연산 속도나 데이터 처리량 같은 물리적 성능 지표를 측정하는 반면, LLM 벤치마크는 모델의 '지능'과 '이해력', '생성 능력' 등 추상적이고 복합적인 능력을 평가한다. 이는 단순히 숫자로 표현하기 어려운 언어적, 논리적 추론 능력을 포함한다.
평가 방식의 다양성: LLM 벤치마크는 수학 문제 해결, 코딩 능력, 상식 추론, 독해력, 요약, 번역 등 다양한 태스크를 수행하도록 요구하며, 정답의 정확성뿐만 아니라 답변의 질, 일관성, 유해성 여부 등 다면적인 평가가 이루어진다.
인간 개입의 필요성: 일부 LLM 벤치마크는 모델의 답변을 사람이 직접 평가하는 휴먼 평가(Human Evaluation) 단계를 포함한다. 이는 단순히 정답 여부를 넘어, 텍스트의 자연스러움, 창의성, 공감 능력 등 미묘한 부분을 판단하기 위함이다. 반면, 일반 컴퓨팅 벤치마크는 대부분 자동화된 테스트 스크립트를 통해 기계적으로 측정된다.
빠른 변화와 새로운 기준의 등장: LLM 기술은 매우 빠르게 발전하고 있어, 기존 벤치마크가 빠르게 무용지물이 되거나 새로운 평가 기준이 계속해서 등장하고 있다. 이는 일반 컴퓨팅 벤치마크가 비교적 안정적인 측정 기준을 유지하는 것과는 대조적이다.
3. 벤치마크의 활용
벤치마크는 단순한 성능 비교를 넘어 다양한 분야에서 실질적인 가치를 제공한다.
3.1. 성능 비교를 통한 최적화
벤치마크는 시스템 성능 최적화의 중요한 도구이다.
하드웨어 구성 최적화: PC 조립 시 CPU, GPU, RAM, 저장장치 간의 벤치마크 점수를 비교하여 특정 작업에 가장 효율적인 조합을 찾을 수 있다. 예를 들어, 고사양 게임을 즐기는 사용자는 CPU보다 GPU에 더 많은 투자를 하는 것이 벤치마크 결과상 더 높은 프레임을 얻는 데 유리하다.
소프트웨어 및 드라이버 최적화: 새로운 운영체제 업데이트, 드라이버 버전 변경, 소프트웨어 설정 변경 등이 시스템 성능에 미치는 영향을 벤치마크를 통해 확인할 수 있다. 특정 드라이버 버전이 게임 벤치마크에서 더 높은 점수를 보인다면, 해당 버전을 유지하거나 롤백하는 것이 좋다.
시스템 병목 현상 진단: 전체 시스템 성능이 특정 부품 때문에 저하되는 '병목 현상'을 벤치마크를 통해 진단할 수 있다. 예를 들어, CPU 벤치마크는 높지만, 실제 게임에서 프레임이 낮게 나온다면 GPU나 RAM의 성능 부족이 원인일 수 있다.
3.2. 산업 내 벤치마크 사용 사례
벤치마크는 특정 산업 분야에서 품질 관리, 경쟁력 분석, 기술 개발의 기준으로 폭넓게 활용된다.
자동차 산업: 신차 개발 시 엔진 성능, 연료 효율, 안전성, 주행 안정성 등을 다양한 벤치마크 테스트를 통해 평가한다. 예를 들어, 연비 벤치마크는 소비자의 구매 결정에 큰 영향을 미치며, 충돌 테스트 벤치마크는 안전성 등급을 결정한다.
클라우드 컴퓨팅: 클라우드 서비스 제공업체들은 자사 서비스의 가상 머신(VM)이나 스토리지 성능을 벤치마크하여 고객에게 투명한 정보를 제공하고, 경쟁사 대비 우위를 입증한다. 고객은 벤치마크 결과를 바탕으로 자신의 워크로드에 적합한 클라우드 서비스를 선택할 수 있다.
금융 산업: 고빈도 매매 시스템이나 데이터 분석 플랫폼의 처리 속도는 금융 거래의 성패를 좌우한다. 금융 기관들은 시스템의 지연 시간, 처리량 등을 벤치마크하여 최적의 성능을 유지하고 경쟁력을 확보한다.
인공지능 산업: LLM을 비롯한 AI 모델 개발자들은 새로운 모델을 출시할 때 다양한 벤치마크를 통해 모델의 성능을 입증한다. 이는 연구 성과를 대외적으로 알리고, 투자 유치 및 기술 상용화에 중요한 역할을 한다. 최근에는 한국어 LLM의 성능을 평가하기 위한 KLUE, KoBART 등의 벤치마크 데이터셋도 활발히 활용되고 있다.
4. 주요 벤치마크 툴
다양한 하드웨어와 소프트웨어의 성능을 측정하기 위한 여러 벤치마크 툴이 존재한다.
4.1. 연산 성능, 저장장치 및 인터넷 관련 툴
CPU/GPU 연산 성능:
Geekbench: 크로스 플랫폼(Windows, macOS, Linux, Android, iOS)을 지원하는 종합 벤치마크 툴이다. 싱글 코어 및 멀티 코어 성능을 측정하며, CPU와 GPU(Compute) 벤치마크를 모두 제공한다.
Cinebench: 3D 렌더링 작업을 기반으로 CPU의 멀티 코어 성능을 측정하는 데 특화된 툴이다. Maxon Cinema 4D 엔진을 사용하여 실제 작업 환경과 유사한 부하를 준다.
3DMark: Futuremark(현재 UL Solutions)에서 개발한 대표적인 GPU 벤치마크 툴이다. 다양한 그래픽 API(DirectX, Vulkan, OpenGL)와 해상도에 맞춰 여러 테스트(Time Spy, Fire Strike, Port Royal 등)를 제공하며, 주로 게임 성능을 평가하는 데 사용된다.
PassMark PerformanceTest: CPU, 2D/3D 그래픽, 메모리, 디스크 등 컴퓨터의 모든 주요 부품에 대한 포괄적인 벤치마크를 제공한다. 직관적인 인터페이스와 방대한 비교 데이터베이스가 특징이다.
저장장치:
CrystalDiskMark: SSD 및 HDD의 순차/랜덤 읽기/쓰기 속도를 측정하는 데 널리 사용되는 무료 툴이다. 간단한 인터페이스로 쉽게 사용할 수 있으며, 다양한 큐 깊이(Queue Depth)와 스레드(Thread) 설정으로 세부적인 테스트가 가능하다.
AS SSD Benchmark: 특히 SSD 성능 측정에 특화된 툴이다. 압축 가능한 데이터와 압축 불가능한 데이터에 대한 성능 차이를 보여줄 수 있으며, IOPS 값도 함께 제공한다.
인터넷 및 네트워크:
Speedtest.net (Ookla): 가장 널리 사용되는 웹 기반 인터넷 속도 측정 툴이다. 다운로드/업로드 속도와 Ping(지연 시간)을 측정하며, 전 세계에 분포한 서버를 통해 정확한 결과를 제공한다.
Fast.com (Netflix): 넷플릭스에서 제공하는 간단한 인터넷 속도 측정 툴로, 주로 넷플릭스 콘텐츠 스트리밍에 필요한 대역폭을 측정하는 데 초점을 맞춘다.
4.2. 배터리 및 인공지능 벤치마크 툴
배터리 벤치마크:
PCMark: UL Solutions에서 개발한 PC 벤치마크 스위트 중 하나로, 배터리 수명 테스트 기능을 포함한다. 웹 브라우징, 비디오 재생, 게임 등 실제 사용 시나리오를 시뮬레이션하여 배터리 지속 시간을 측정한다.
GSMArena Battery Test: 스마트폰 리뷰 사이트인 GSMArena에서 자체적으로 진행하는 배터리 테스트로, 웹 브라우징, 비디오 재생, 통화 시간 등을 기준으로 배터리 내구성을 평가한다.
인공지능 벤치마크:
MLPerf: 구글, 엔비디아, 인텔 등 주요 AI 기업 및 연구 기관들이 참여하여 개발한 포괄적인 AI 벤치마크 스위트이다. 이미지 분류, 객체 탐지, 음성 인식, 번역 등 다양한 AI 워크로드에 대한 학습(training) 및 추론(inference) 성능을 측정한다. 이는 특정 하드웨어에서 AI 모델이 얼마나 효율적으로 작동하는지 평가하는 데 사용된다.
Hugging Face Open LLM Leaderboard: 허깅페이스에서 운영하는 LLM 성능 벤치마크 순위표로, 다양한 공개 LLM 모델들의 언어 이해, 추론, 상식 등 여러 태스크에 대한 성능을 종합적으로 평가하여 순위를 매긴다. 이는 LLM 연구자와 개발자들에게 중요한 참고 자료가 된다.
MMLU (Massive Multitask Language Understanding): 57개 학문 분야(역사, 수학, 법학, 의학 등)에 걸친 객관식 문제로 구성된 벤치마크로, LLM의 광범위한 지식과 추론 능력을 평가하는 데 사용된다.
5. LLM 벤치마크의 이해
대규모 언어 모델(LLM)의 등장과 함께, 이들의 복잡한 능력을 정확히 평가하기 위한 벤치마크의 중요성이 더욱 커지고 있다.
5.1. LLM 벤치마크란 무엇인지
LLM 벤치마크는 대규모 언어 모델이 인간의 언어를 얼마나 잘 이해하고, 추론하며, 생성하는지를 측정하기 위한 일련의 표준화된 테스트이다. 기존의 자연어 처리(NLP) 벤치마크가 특정 태스크(예: 감성 분석, 개체명 인식)에 집중했다면, LLM 벤치마크는 모델의 일반적인 지능과 다재다능함을 평가하는 데 초점을 맞춘다. 이는 모델이 단순히 텍스트를 처리하는 것을 넘어, 상식, 논리, 창의성 등 복합적인 인지 능력을 얼마나 잘 발휘하는지 알아보는 과정이다.
예를 들어, "벤치마크의 중요성을 설명하는 글을 써줘"라는 프롬프트에 대해 모델이 얼마나 정확하고, 논리적이며, 유익하고, 자연스러운 답변을 생성하는지를 평가하는 것이 LLM 벤치마크의 핵심이다.
5.2. 주요 메트릭과 평가 방식
LLM 벤치마크는 다양한 메트릭과 평가 방식을 활용하여 모델의 성능을 다각도로 측정한다.
정확도 (Accuracy): 모델이 주어진 질문에 대해 올바른 답변을 얼마나 잘 도출하는지 측정한다. 이는 주로 객관식 문제나 정답이 명확한 태스크에서 사용된다. 예를 들어, 수학 문제 풀이나 코드 생성의 정확성 등이 이에 해당한다.
유창성 (Fluency): 모델이 생성한 텍스트가 얼마나 문법적으로 올바르고, 자연스럽고, 읽기 쉬운지 평가한다. 이는 주로 번역, 요약, 글쓰기 등 생성 태스크에서 중요하게 고려된다.
일관성 (Coherence/Consistency): 모델의 답변이 전체적으로 논리적이고 일관된 흐름을 유지하는지 평가한다. 긴 글을 생성하거나 여러 질문에 답할 때 특히 중요하며, 모순된 정보를 제공하지 않는 것이 핵심이다.
추론 능력 (Reasoning): 모델이 주어진 정보를 바탕으로 논리적인 결론을 도출하거나, 복잡한 문제를 해결하는 능력을 측정한다. 상식 추론, 논리 퍼즐, 복잡한 독해 문제 등이 이에 해당한다.
유해성/안전성 (Harmlessness/Safety): 모델이 차별적이거나, 폭력적이거나, 불법적인 콘텐츠를 생성하지 않는지 평가한다. 이는 실제 서비스에 적용될 LLM의 윤리적이고 사회적인 책임을 다루는 중요한 지표이다.
편향성 (Bias): 모델이 특정 인종, 성별, 지역 등에 대한 편향된 정보를 생성하는지 여부를 측정한다. 편향된 데이터로 학습된 모델은 사회적 편견을 강화할 수 있으므로, 이를 줄이는 것이 중요하다.
휴먼 평가 (Human Evaluation): 자동화된 메트릭만으로는 모델의 미묘한 성능 차이나 창의성, 공감 능력 등을 완전히 평가하기 어렵다. 따라서 사람이 직접 모델의 답변을 읽고 점수를 매기거나 순위를 정하는 방식이 병행된다. 이는 특히 주관적인 판단이 필요한 생성 태스크에서 중요한 역할을 한다.
제로샷/퓨샷 학습 (Zero-shot/Few-shot Learning): 모델이 학습 데이터에 없는 새로운 태스크나 소수의 예시만으로도 얼마나 잘 수행하는지 평가한다. 이는 모델의 일반화 능력과 새로운 상황에 대한 적응력을 보여준다.
6. 벤치마크 결과의 신뢰성
벤치마크는 객관적인 성능 지표를 제공하지만, 그 결과의 해석과 신뢰성에는 주의가 필요하다.
6.1. 벤치마크 조작 가능성
일부 제조사나 개발사는 자사 제품의 벤치마크 점수를 높이기 위해 다양한 편법을 사용하기도 한다.
벤치마크 감지 및 성능 부스트: 일부 장치는 벤치마크 소프트웨어를 감지하면 일시적으로 최대 성능을 발휘하도록 설정되어 있다. 이는 실제 일반적인 사용 환경에서는 도달하기 어려운 성능이며, '치팅(cheating)'으로 간주될 수 있다. 예를 들어, 스마트폰 제조사들이 벤치마크 앱이 실행될 때만 CPU 클럭을 최대로 올리거나, 특정 앱에 대한 성능 제한을 해제하는 경우가 과거에 보고된 바 있다.
특정 벤치마크에 최적화: 특정 벤치마크 툴에서 높은 점수를 얻기 위해 하드웨어 또는 소프트웨어를 최적화하는 경우도 있다. 이는 다른 벤치마크나 실제 사용 환경에서는 기대만큼의 성능 향상을 보이지 않을 수 있다.
결과 선택적 공개: 유리한 벤치마크 결과만 선별적으로 공개하고 불리한 결과는 숨기는 방식이다. 이는 소비자를 오도할 수 있다.
이러한 조작 가능성 때문에 공신력 있는 벤치마크 기관이나 커뮤니티에서는 조작 여부를 지속적으로 감시하고, 표준화된 테스트 절차를 강화하며, 다양한 벤치마크 툴을 통해 교차 검증을 시도한다.
6.2. 점수의 해석과 한계
벤치마크 점수는 중요한 지표이지만, 그 자체로 모든 것을 대변하지는 않는다.
실제 사용 환경과의 괴리: 벤치마크는 특정 시나리오를 가정하여 설계되므로, 사용자의 실제 사용 패턴과는 다를 수 있다. 예를 들어, 게임 벤치마크 점수가 매우 높은 그래픽카드라도, 사용자가 주로 문서 작업만 한다면 해당 점수는 큰 의미가 없을 수 있다.
종합적인 시스템 성능 반영 부족: 특정 부품의 벤치마크 점수가 높다고 해서 전체 시스템 성능이 반드시 높은 것은 아니다. CPU, GPU, RAM, 저장장치, 네트워크 등 모든 부품의 균형이 중요하며, 이들 간의 상호작용이 전체 성능에 더 큰 영향을 미칠 수 있다. 즉, "최고의 부품을 모아도 최고의 시스템이 되지 않을 수 있다"는 점을 기억해야 한다.
기술 발전 속도: 특히 AI 분야에서는 기술 발전 속도가 매우 빨라, 오늘날 최고 성능을 보여주는 벤치마크 모델이 불과 몇 달 후에는 구형이 될 수 있다. 따라서 최신 벤치마크 트렌드를 지속적으로 파악하는 것이 중요하다.
주관적인 경험의 중요성: 벤치마크는 객관적인 수치를 제공하지만, 사용자가 느끼는 '체감 성능'은 벤치마크 점수만으로는 설명하기 어려운 주관적인 요소가 많다. 예를 들어, 특정 모델의 벤치마크 점수는 낮더라도, 사용자가 선호하는 특정 작업에서 매우 효율적일 수 있다.
따라서 벤치마크 점수를 해석할 때는 여러 벤치마크 툴의 결과를 종합적으로 고려하고, 자신의 실제 사용 목적과 환경을 충분히 고려하여 판단하는 것이 현명하다.
7. 최신 벤치마크 트렌드
기술 발전, 특히 인공지능 분야의 급격한 성장은 새로운 벤치마크의 필요성을 끊임없이 제기하고 있다.
7.1. AI 패러다임의 전환
최근 몇 년간 대규모 언어 모델(LLM)과 같은 생성형 AI의 등장은 AI 벤치마크 패러다임에 큰 변화를 가져왔다. 과거 AI 벤치마크는 주로 이미지 분류, 객체 탐지, 음성 인식 등 특정 태스크에 대한 모델의 정확도를 측정하는 데 중점을 두었다. 그러나 LLM은 다양한 태스크를 범용적으로 수행할 수 있는 '일반 지능'에 가까운 능력을 보여주면서, 이를 평가하기 위한 새로운 접근 방식이 요구되고 있다.
멀티모달 벤치마크의 부상: 텍스트뿐만 아니라 이미지, 오디오, 비디오 등 다양한 형태의 데이터를 동시에 이해하고 처리하는 멀티모달(Multimodal) AI 모델의 중요성이 커지면서, 이를 평가하는 벤치마크도 증가하고 있다. 예를 들어, 텍스트와 이미지를 동시에 이해하여 질문에 답하거나 새로운 이미지를 생성하는 모델의 성능을 측정하는 벤치마크가 개발되고 있다.
추론 및 상식 벤치마크의 강화: 단순한 패턴 인식이나 데이터 암기를 넘어, 복잡한 추론 능력과 폭넓은 상식 지식을 평가하는 벤치마크가 더욱 중요해지고 있다. 이는 AI가 실제 세계 문제를 해결하는 데 필수적인 능력이다.
안전성 및 윤리 벤치마크: AI 모델의 편향성, 유해성, 오용 가능성 등 사회적, 윤리적 문제를 평가하는 벤치마크의 중요성이 크게 부각되고 있다. 이는 AI 기술의 책임 있는 개발과 배포를 위해 필수적인 요소로 인식되고 있다.
7.2. 새로운 벤치마크의 중요성
AI 패러다임의 전환은 기존 벤치마크의 한계를 드러내고, 새로운 벤치마크의 필요성을 강조하고 있다.
기존 벤치마크의 포화: 많은 기존 벤치마크 데이터셋에서 최신 LLM 모델들은 이미 인간 수준 또는 그 이상의 성능을 달성하고 있다. 이는 벤치마크가 더 이상 모델 간의 유의미한 성능 차이를 변별하지 못하게 되는 '벤치마크 포화(Benchmark Saturation)' 문제를 야기한다.
새로운 능력 평가의 필요성: LLM은 단순한 답변 생성을 넘어, 복잡한 문제 해결, 창의적인 글쓰기, 코드 디버깅 등 이전에는 상상하기 어려웠던 능력을 보여준다. 이러한 새로운 능력을 정확하게 평가하고 비교할 수 있는 벤치마크가 필수적이다. 예를 들어, LLM이 주어진 데이터만으로 새로운 과학 가설을 세우거나, 복잡한 소프트웨어 시스템을 설계하는 능력을 평가하는 벤치마크가 연구될 수 있다.
실제 적용 환경 반영: 실험실 환경에서의 벤치마크 점수뿐만 아니라, 실제 서비스 환경에서 AI 모델이 얼마나 안정적이고 효율적으로 작동하는지를 평가하는 벤치마크가 중요해지고 있다. 이는 모델의 지연 시간, 처리량, 자원 사용량 등을 포함한다.
지속적인 업데이트와 다양성: AI 기술의 빠른 발전 속도를 고려할 때, 벤치마크 데이터셋과 평가 방식은 지속적으로 업데이트되고 다양화되어야 한다. 단일 벤치마크에 의존하기보다는 여러 벤치마크를 통해 모델의 종합적인 능력을 평가하는 것이 바람직하다.
결론적으로, 벤치마크는 기술 발전의 중요한 이정표이자 가이드라인 역할을 한다. 단순한 숫자 비교를 넘어, 그 의미와 한계를 정확히 이해하고 최신 트렌드를 반영하는 새로운 벤치마크의 개발과 활용은 앞으로도 기술 혁신을 이끄는 핵심 동력이 될 것이다.
참고 문헌
[네이버 지식백과] 벤치마킹 (시사상식사전). Available at: https://terms.naver.com/entry.naver?docId=70638&cid=43667&categoryId=43667
[KLUE: Korean Language Understanding Evaluation]. Available at: https://klue-benchmark.com/
[Geekbench Official Website]. Available at: https://www.geekbench.com/
[Cinebench Official Website]. Available at: https://www.maxon.net/en/cinebench
[3DMark Official Website]. Available at: https://benchmarks.ul.com/3dmark
[MLPerf Official Website]. Available at: https://mlcommons.org/benchmarks/mlperf/
[Hugging Face Open LLM Leaderboard]. Available at: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
[MMLU: Measuring Massive Multitask Language Understanding]. Hendrycks, D., Burns, C., Kadavath, S., et al. (2021). arXiv preprint arXiv:2009.03300. Available at: https://arxiv.org/abs/2009.03300
[Google AI Blog: Benchmarking for Responsible AI]. (2023). Available at: https://ai.googleblog.com/2023/10/benchmarking-for-responsible-ai.html
[Ars Technica: Samsung caught throttling apps, including games, on Galaxy S22 phones]. (2022). Available at: https://arstechnica.com/gadgets/2022/03/samsung-caught-throttling-apps-including-games-on-galaxy-s22-phones/
[Towards Data Science: The Problem with AI Benchmarks]. (2023). Available at: https://towardsdatascience.com/the-problem-with-ai-benchmarks-e6b7c8a4d4f8
[LG CNS 블로그: LLM (거대 언어 모델) 개발 현황 및 벤치마크 성능 비교]. (2023). Available at: https://www.lgcns.com/insight/blog-post/ai/llm-benchmark/
[AI타임스: 국내 AI 반도체 벤치마크, 'AI 칩 성능 검증 환경' 구축]. (2024). Available at: http://www.aitimes.com/news/articleView.html?idxno=157640
Disclaimer: 이 글은 2025년 9월 현재의 정보를 바탕으로 작성되었으며, 기술 발전과 함께 내용은 변경될 수 있다.
---벤치마크: 성능 측정의 기준점, 그 중요성과 활용법
Meta Description: 벤치마크란 무엇이며 왜 중요한가? 컴퓨팅 성능부터 LLM까지, 벤치마크의 종류, 활용법, 주요 툴, 신뢰성 및 최신 AI 트렌드를 심층 분석한다.
목차
벤치마크의 개념
벤치마크의 종류
벤치마크의 활용
주요 벤치마크 툴
LLM 벤치마크의 이해
벤치마크 결과의 신뢰성
최신 벤치마크 트렌드
1. 벤치마크의 개념
1.1. 벤치마크의 정의와 목적
벤치마크(Benchmark)는 특정 시스템, 부품, 소프트웨어 또는 프로세스의 성능을 객관적으로 측정하고 비교하기 위한 표준화된 테스트 또는 기준점을 의미한다. 이는 주로 컴퓨터 하드웨어, 소프트웨어, 네트워크, 인공지능 모델 등 다양한 기술 분야에서 사용된다. 벤치마크의 주요 목적은 다음과 같다.
객관적인 성능 측정: 주관적인 판단이 아닌, 정량적인 데이터를 통해 성능을 평가한다. 예를 들어, 컴퓨터 프로세서의 벤치마크는 특정 계산 작업을 얼마나 빠르게 처리하는지 측정하여 수치화한다.
비교 가능성 제공: 서로 다른 제품이나 시스템 간의 성능을 공정하게 비교할 수 있는 기준을 제시한다. 이는 소비자가 제품을 선택하거나 개발자가 시스템을 개선할 때 중요한 정보를 제공한다.
개선점 식별: 벤치마크를 통해 현재 시스템의 약점이나 병목 현상을 파악하고, 이를 개선하기 위한 방향을 설정할 수 있다.
투명성 확보: 제조사나 개발자가 주장하는 성능을 제3자가 검증할 수 있는 수단을 제공하여 시장의 투명성을 높인다.
벤치마크라는 용어는 원래 측량에서 사용되던 기준점(표준 높이)에서 유래되었으며, 비즈니스 분야에서는 경쟁사나 업계 최고 수준의 기업과 비교하여 자신의 성과를 평가하고 개선하는 경영 기법을 의미하기도 한다. 기술 분야에서는 이와 유사하게 특정 기준에 대비하여 성능을 평가하는 행위를 지칭한다.
1.2. 벤치마크가 중요한 이유
벤치마크는 현대 기술 사회에서 다음과 같은 이유로 매우 중요한 역할을 한다.
소비자의 합리적인 선택 지원: 스마트폰, PC, 그래픽카드 등 다양한 제품군에서 벤치마크 점수는 소비자가 자신의 용도와 예산에 맞춰 최적의 제품을 선택하는 데 필수적인 정보를 제공한다.
개발 및 연구의 방향 제시: 하드웨어 제조사나 소프트웨어 개발사는 벤치마크 결과를 통해 자사 제품의 강점과 약점을 파악하고, 다음 세대 제품 개발이나 소프트웨어 최적화에 활용한다. 특정 벤치마크에서 낮은 점수를 받았다면, 해당 영역의 성능 개선에 집중할 수 있다.
산업 표준 및 혁신 촉진: 벤치마크는 특정 성능 기준을 제시하여 산업 전반의 기술 발전을 유도한다. 더 높은 벤치마크 점수를 얻기 위한 경쟁은 기술 혁신을 촉진하고, 이는 결국 더 나은 제품과 서비스로 이어진다.
투자 및 정책 결정의 근거: 기업은 벤치마크 결과를 바탕으로 기술 투자 방향을 결정하거나, 정부는 연구 개발 자금 지원 등의 정책을 수립할 때 벤치마크 데이터를 참고할 수 있다. 특히 인공지능 분야에서는 모델의 성능 벤치마크가 연구의 진행 상황과 잠재력을 보여주는 중요한 지표가 된다.
2. 벤치마크의 종류
벤치마크는 측정 대상과 목적에 따라 다양하게 분류될 수 있다.
2.1. 컴퓨팅 부품 성능 평가
가장 일반적인 벤치마크는 PC, 서버, 스마트폰 등 컴퓨팅 기기의 핵심 부품 성능을 평가하는 데 사용된다.
CPU (중앙 처리 장치) 벤치마크: 프로세서의 연산 능력, 멀티태스킹 성능 등을 측정한다. 대표적인 툴로는 Geekbench, Cinebench, PassMark 등이 있다.
GPU (그래픽 처리 장치) 벤치마크: 그래픽카드의 3D 렌더링 성능, 게임 프레임 처리 능력 등을 측정한다. 3DMark, FurMark, Unigine Heaven/Superposition 등이 널리 사용된다.
RAM (메모리) 벤치마크: 메모리의 읽기/쓰기 속도, 대역폭, 지연 시간 등을 측정한다. AIDA64, MemTest86 등이 주로 사용된다.
저장장치 (SSD/HDD) 벤치마크: 솔리드 스테이트 드라이브(SSD)나 하드 디스크 드라이브(HDD)의 순차/랜덤 읽기/쓰기 속도, IOPS(초당 입출력 작업 수) 등을 평가한다. CrystalDiskMark, AS SSD Benchmark 등이 대표적이다.
네트워크 벤치마크: 인터넷 연결 속도, Wi-Fi 신호 강도, 네트워크 지연 시간(Ping) 등을 측정한다. Speedtest.net, Fast.com 등 웹 기반 툴이 흔히 사용된다.
배터리 벤치마크: 노트북이나 스마트폰의 배터리 지속 시간을 측정한다. 특정 작업을 반복 수행하거나 동영상 재생, 웹 브라우징 등 실제 사용 패턴을 시뮬레이션하여 배터리 효율성을 평가한다.
2.2. LLM 벤치마크와 일반 벤치마크의 차이점
최근 각광받는 대규모 언어 모델(LLM) 벤치마크는 기존 컴퓨팅 부품 벤치마크와는 다른 특성을 보인다.
측정 대상의 복잡성: 일반 컴퓨팅 벤치마크가 주로 연산 속도나 데이터 처리량 같은 물리적 성능 지표를 측정하는 반면, LLM 벤치마크는 모델의 '지능'과 '이해력', '생성 능력' 등 추상적이고 복합적인 능력을 평가한다.
평가 방식의 다양성: LLM 벤치마크는 수학 문제 해결, 코딩 능력, 상식 추론, 독해력, 요약, 번역 등 다양한 태스크를 수행하도록 요구하며, 정답의 정확성뿐만 아니라 답변의 질, 일관성, 유해성 여부 등 다면적인 평가가 이루어진다.
인간 개입의 필요성: 일부 LLM 벤치마크는 모델의 답변을 사람이 직접 평가하는 휴먼 평가(Human Evaluation) 단계를 포함한다. 이는 단순히 정답 여부를 넘어, 텍스트의 자연스러움, 창의성, 공감 능력 등 미묘한 부분을 판단하기 위함이다. 반면, 일반 컴퓨팅 벤치마크는 대부분 자동화된 테스트 스크립트를 통해 기계적으로 측정된다.
빠른 변화와 새로운 기준의 등장: LLM 기술은 매우 빠르게 발전하고 있어, 기존 벤치마크가 빠르게 무용지물이 되거나 새로운 평가 기준이 계속해서 등장하고 있다. 이는 일반 컴퓨팅 벤치마크가 비교적 안정적인 측정 기준을 유지하는 것과는 대조적이다.
3. 벤치마크의 활용
벤치마크는 단순한 성능 비교를 넘어 다양한 분야에서 실질적인 가치를 제공한다.
3.1. 성능 비교를 통한 최적화
벤치마크는 시스템 성능 최적화의 중요한 도구이다.
하드웨어 구성 최적화: PC 조립 시 CPU, GPU, RAM, 저장장치 간의 벤치마크 점수를 비교하여 특정 작업에 가장 효율적인 조합을 찾을 수 있다.
소프트웨어 및 드라이버 최적화: 새로운 운영체제 업데이트, 드라이버 버전 변경, 소프트웨어 설정 변경 등이 시스템 성능에 미치는 영향을 벤치마크를 통해 확인할 수 있다.
시스템 병목 현상 진단: 전체 시스템 성능이 특정 부품 때문에 저하되는 '병목 현상'을 벤치마크를 통해 진단할 수 있다.
3.2. 산업 내 벤치마크 사용 사례
벤치마크는 특정 산업 분야에서 품질 관리, 경쟁력 분석, 기술 개발의 기준으로 폭넓게 활용된다.
자동차 산업: 신차 개발 시 엔진 성능, 연료 효율, 안전성, 주행 안정성 등을 다양한 벤치마크 테스트를 통해 평가한다.
클라우드 컴퓨팅: 클라우드 서비스 제공업체들은 자사 서비스의 가상 머신(VM)이나 스토리지 성능을 벤치마크하여 고객에게 투명한 정보를 제공하고, 경쟁사 대비 우위를 입증한다.
금융 산업: 고빈도 매매 시스템이나 데이터 분석 플랫폼의 처리 속도는 금융 거래의 성패를 좌우한다. 금융 기관들은 시스템의 지연 시간, 처리량 등을 벤치마크하여 최적의 성능을 유지하고 경쟁력을 확보한다.
인공지능 산업: LLM을 비롯한 AI 모델 개발자들은 새로운 모델을 출시할 때 다양한 벤치마크를 통해 모델의 성능을 입증한다. 이는 연구 성과를 대외적으로 알리고, 투자 유치 및 기술 상용화에 중요한 역할을 한다. 최근에는 한국어 LLM의 성능을 평가하기 위한 KLUE, KoBART 등의 벤치마크 데이터셋도 활발히 활용되고 있다.
4. 주요 벤치마크 툴
다양한 하드웨어와 소프트웨어의 성능을 측정하기 위한 여러 벤치마크 툴이 존재한다.
4.1. 연산 성능, 저장장치 및 인터넷 관련 툴
CPU/GPU 연산 성능:
Geekbench: 크로스 플랫폼(Windows, macOS, Linux, Android, iOS)을 지원하는 종합 벤치마크 툴이다. 싱글 코어 및 멀티 코어 성능을 측정하며, CPU와 GPU(Compute) 벤치마크를 모두 제공한다.
Cinebench: 3D 렌더링 작업을 기반으로 CPU의 멀티 코어 성능을 측정하는 데 특화된 툴이다. Maxon Cinema 4D 엔진을 사용하여 실제 작업 환경과 유사한 부하를 준다.
3DMark: UL Solutions에서 개발한 대표적인 GPU 벤치마크 툴이다. 다양한 그래픽 API(DirectX, Vulkan, OpenGL)와 해상도에 맞춰 여러 테스트(Time Spy, Fire Strike, Port Royal 등)를 제공하며, 주로 게임 성능을 평가하는 데 사용된다.
PassMark PerformanceTest: CPU, 2D/3D 그래픽, 메모리, 디스크 등 컴퓨터의 모든 주요 부품에 대한 포괄적인 벤치마크를 제공한다.
저장장치:
CrystalDiskMark: SSD 및 HDD의 순차/랜덤 읽기/쓰기 속도를 측정하는 데 널리 사용되는 무료 툴이다.
AS SSD Benchmark: 특히 SSD 성능 측정에 특화된 툴이다.
인터넷 및 네트워크:
Speedtest.net (Ookla): 가장 널리 사용되는 웹 기반 인터넷 속도 측정 툴이다. 다운로드/업로드 속도와 Ping(지연 시간)을 측정하며, 전 세계에 분포한 서버를 통해 정확한 결과를 제공한다.
Fast.com (Netflix): 넷플릭스에서 제공하는 간단한 인터넷 속도 측정 툴로, 주로 넷플릭스 콘텐츠 스트리밍에 필요한 대역폭을 측정하는 데 초점을 맞춘다.
4.2. 배터리 및 인공지능 벤치마크 툴
배터리 벤치마크:
PCMark: UL Solutions에서 개발한 PC 벤치마크 스위트 중 하나로, 배터리 수명 테스트 기능을 포함한다.
GSMArena Battery Test: 스마트폰 리뷰 사이트인 GSMArena에서 자체적으로 진행하는 배터리 테스트로, 웹 브라우징, 비디오 재생, 통화 시간 등을 기준으로 배터리 내구성을 평가한다.
인공지능 벤치마크:
MLPerf: 구글, 엔비디아, 인텔 등 주요 AI 기업 및 연구 기관들이 참여하여 개발한 포괄적인 AI 벤치마크 스위트이다. 이미지 분류, 객체 탐지, 음성 인식, 번역 등 다양한 AI 워크로드에 대한 학습(training) 및 추론(inference) 성능을 측정한다.
Hugging Face Open LLM Leaderboard: 허깅페이스에서 운영하는 LLM 성능 벤치마크 순위표로, 다양한 공개 LLM 모델들의 언어 이해, 추론, 상식 등 여러 태스크에 대한 성능을 종합적으로 평가하여 순위를 매긴다.
MMLU (Massive Multitask Language Understanding): 57개 학문 분야(역사, 수학, 법학, 의학 등)에 걸친 객관식 문제로 구성된 벤치마크로, LLM의 광범위한 지식과 추론 능력을 평가하는 데 사용된다.
5. LLM 벤치마크의 이해
대규모 언어 모델(LLM)의 등장과 함께, 이들의 복잡한 능력을 정확히 평가하기 위한 벤치마크의 중요성이 더욱 커지고 있다.
5.1. LLM 벤치마크란 무엇인지
LLM 벤치마크는 대규모 언어 모델이 인간의 언어를 얼마나 잘 이해하고, 추론하며, 생성하는지를 측정하기 위한 일련의 표준화된 테스트이다. 기존의 자연어 처리(NLP) 벤치마크가 특정 태스크(예: 감성 분석, 개체명 인식)에 집중했다면, LLM 벤치마크는 모델의 일반적인 지능과 다재다능함을 평가하는 데 초점을 맞춘다. 이는 모델이 단순히 텍스트를 처리하는 것을 넘어, 상식, 논리, 창의성 등 복합적인 인지 능력을 얼마나 잘 발휘하는지 알아보는 과정이다.
5.2. 주요 메트릭과 평가 방식
LLM 벤치마크는 다양한 메트릭과 평가 방식을 활용하여 모델의 성능을 다각도로 측정한다.
정확도 (Accuracy): 모델이 주어진 질문에 대해 올바른 답변을 얼마나 잘 도출하는지 측정한다. 이는 주로 객관식 문제나 정답이 명확한 태스크에서 사용된다.
유창성 (Fluency): 모델이 생성한 텍스트가 얼마나 문법적으로 올바르고, 자연스럽고, 읽기 쉬운지 평가한다.
일관성 (Coherence/Consistency): 모델의 답변이 전체적으로 논리적이고 일관된 흐름을 유지하는지 평가한다.
추론 능력 (Reasoning): 모델이 주어진 정보를 바탕으로 논리적인 결론을 도출하거나, 복잡한 문제를 해결하는 능력을 측정한다.
유해성/안전성 (Harmlessness/Safety): 모델이 차별적이거나, 폭력적이거나, 불법적인 콘텐츠를 생성하지 않는지 평가한다. 이는 실제 서비스에 적용될 LLM의 윤리적이고 사회적인 책임을 다루는 중요한 지표이다.
편향성 (Bias): 모델이 특정 인종, 성별, 지역 등에 대한 편향된 정보를 생성하는지 여부를 측정한다.
휴먼 평가 (Human Evaluation): 자동화된 메트릭만으로는 모델의 미묘한 성능 차이나 창의성, 공감 능력 등을 완전히 평가하기 어렵다. 따라서 사람이 직접 모델의 답변을 읽고 점수를 매기거나 순위를 정하는 방식이 병행된다.
제로샷/퓨샷 학습 (Zero-shot/Few-shot Learning): 모델이 학습 데이터에 없는 새로운 태스크나 소수의 예시만으로도 얼마나 잘 수행하는지 평가한다. 이는 모델의 일반화 능력과 새로운 상황에 대한 적응력을 보여준다.
6. 벤치마크 결과의 신뢰성
벤치마크는 객관적인 성능 지표를 제공하지만, 그 결과의 해석과 신뢰성에는 주의가 필요하다.
6.1. 벤치마크 조작 가능성
일부 제조사나 개발사는 자사 제품의 벤치마크 점수를 높이기 위해 다양한 편법을 사용하기도 한다.
벤치마크 감지 및 성능 부스트: 일부 장치는 벤치마크 소프트웨어를 감지하면 일시적으로 최대 성능을 발휘하도록 설정되어 있다. 이는 실제 일반적인 사용 환경에서는 도달하기 어려운 성능이며, '치팅(cheating)'으로 간주될 수 있다. 예를 들어, 삼성 갤럭시 S22 시리즈의 경우, 벤치마크 앱을 감지하여 성능을 조작했다는 논란이 있었다.
특정 벤치마크에 최적화: 특정 벤치마크 툴에서 높은 점수를 얻기 위해 하드웨어 또는 소프트웨어를 최적화하는 경우도 있다. 이는 다른 벤치마크나 실제 사용 환경에서는 기대만큼의 성능 향상을 보이지 않을 수 있다.
결과 선택적 공개: 유리한 벤치마크 결과만 선별적으로 공개하고 불리한 결과는 숨기는 방식이다.
이러한 조작 가능성 때문에 공신력 있는 벤치마크 기관이나 커뮤니티에서는 조작 여부를 지속적으로 감시하고, 표준화된 테스트 절차를 강화하며, 다양한 벤치마크 툴을 통해 교차 검증을 시도한다.
6.2. 점수의 해석과 한계
벤치마크 점수는 중요한 지표이지만, 그 자체로 모든 것을 대변하지는 않는다.
실제 사용 환경과의 괴리: 벤치마크는 특정 시나리오를 가정하여 설계되므로, 사용자의 실제 사용 패턴과는 다를 수 있다.
종합적인 시스템 성능 반영 부족: 특정 부품의 벤치마크 점수가 높다고 해서 전체 시스템 성능이 반드시 높은 것은 아니다. CPU, GPU, RAM, 저장장치, 네트워크 등 모든 부품의 균형이 중요하며, 이들 간의 상호작용이 전체 성능에 더 큰 영향을 미칠 수 있다.
기술 발전 속도: 특히 AI 분야에서는 기술 발전 속도가 매우 빨라, 오늘날 최고 성능을 보여주는 벤치마크 모델이 불과 몇 달 후에는 구형이 될 수 있다.
주관적인 경험의 중요성: 벤치마크는 객관적인 수치를 제공하지만, 사용자가 느끼는 '체감 성능'은 벤치마크 점수만으로는 설명하기 어려운 주관적인 요소가 많다.
따라서 벤치마크 점수를 해석할 때는 여러 벤치마크 툴의 결과를 종합적으로 고려하고, 자신의 실제 사용 목적과 환경을 충분히 고려하여 판단하는 것이 현명하다.
7. 최신 벤치마크 트렌드
기술 발전, 특히 인공지능 분야의 급격한 성장은 새로운 벤치마크의 필요성을 끊임없이 제기하고 있다.
7.1. AI 패러다임의 전환
최근 몇 년간 대규모 언어 모델(LLM)과 같은 생성형 AI의 등장은 AI 벤치마크 패러다임에 큰 변화를 가져왔다. 과거 AI 벤치마크는 주로 이미지 분류, 객체 탐지, 음성 인식 등 특정 태스크에 대한 모델의 정확도를 측정하는 데 중점을 두었다. 그러나 LLM은 다양한 태스크를 범용적으로 수행할 수 있는 '일반 지능'에 가까운 능력을 보여주면서, 이를 평가하기 위한 새로운 접근 방식이 요구되고 있다.
멀티모달 벤치마크의 부상: 텍스트뿐만 아니라 이미지, 오디오, 비디오 등 다양한 형태의 데이터를 동시에 이해하고 처리하는 멀티모달(Multimodal) AI 모델의 중요성이 커지면서, 이를 평가하는 벤치마크도 증가하고 있다.
추론 및 상식 벤치마크의 강화: 단순한 패턴 인식이나 데이터 암기를 넘어, 복잡한 추론 능력과 폭넓은 상식 지식을 평가하는 벤치마크가 더욱 중요해지고 있다.
안전성 및 윤리 벤치마크: AI 모델의 편향성, 유해성, 오용 가능성 등 사회적, 윤리적 문제를 평가하는 벤치마크의 중요성이 크게 부각되고 있다. 이는 AI 기술의 책임 있는 개발과 배포를 위해 필수적인 요소로 인식되고 있다.
7.2. 새로운 벤치마크의 중요성
AI 패러다임의 전환은 기존 벤치마크의 한계를 드러내고, 새로운 벤치마크의 필요성을 강조하고 있다.
기존 벤치마크의 포화: 많은 기존 벤치마크 데이터셋에서 최신 LLM 모델들은 이미 인간 수준 또는 그 이상의 성능을 달성하고 있다. 이는 벤치마크가 더 이상 모델 간의 유의미한 성능 차이를 변별하지 못하게 되는 '벤치마크 포화(Benchmark Saturation)' 문제를 야기한다.
새로운 능력 평가의 필요성: LLM은 단순한 답변 생성을 넘어, 복잡한 문제 해결, 창의적인 글쓰기, 코드 디버깅 등 이전에는 상상하기 어려웠던 능력을 보여준다. 이러한 새로운 능력을 정확하게 평가하고 비교할 수 있는 벤치마크가 필수적이다.
실제 적용 환경 반영: 실험실 환경에서의 벤치마크 점수뿐만 아니라, 실제 서비스 환경에서 AI 모델이 얼마나 안정적이고 효율적으로 작동하는지를 평가하는 벤치마크가 중요해지고 있다. 이는 모델의 지연 시간, 처리량, 자원 사용량 등을 포함한다.
지속적인 업데이트와 다양성: AI 기술의 빠른 발전 속도를 고려할 때, 벤치마크 데이터셋과 평가 방식은 지속적으로 업데이트되고 다양화되어야 한다. 단일 벤치마크에 의존하기보다는 여러 벤치마크를 통해 모델의 종합적인 능력을 평가하는 것이 바람직하다.
결론적으로, 벤치마크는 기술 발전의 중요한 이정표이자 가이드라인 역할을 한다. 단순한 숫자 비교를 넘어, 그 의미와 한계를 정확히 이해하고 최신 트렌드를 반영하는 새로운 벤치마크의 개발과 활용은 앞으로도 기술 혁신을 이끄는 핵심 동력이 될 것이다.
참고 문헌
** IBM. (2024, June 25). LLM 벤치마크란 무엇인가요? Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHPMbiQuWLup0NotglIRIKPPis0oF3nwk9ePwQC3DuAyFASlaLKQ6VuIj6ylpUmyS5JTtThhyXujQWYUn0Yj_81jPLGB9XUgXjW8YEwweYeqrIkTbBnjAt_08Yd2FQ7wRw7nQDo_sPEwIeQ1x-M4Lca
** Evidently AI. (n.d.). 30 LLM evaluation benchmarks and how they work. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEnrrC-4H8F4Fr4BjIMY5w9fTdfDew0U2JQ8teQwrFhF7J3zVqHk6r6UZSnJTRXWPOMGuwzPMbvxdfqgR3hhshE0U1Xd-HrhRtyYBuU0UxIMYHIZ58g38zo1Tw1NZRmHiGfd3NjLSyca1920908Kx8=
** Geekbench Official Website. (n.d.). Geekbench. Retrieved from https://www.geekbench.com/
** Maxon. (n.d.). Cinebench. Retrieved from https://www.maxon.net/en/cinebench
** UL Solutions. (n.d.). 3DMark. Retrieved from https://benchmarks.ul.com/3dmark
** MLCommons. (n.d.). MLPerf. Retrieved from https://mlcommons.org/benchmarks/mlperf/
** Hugging Face. (n.d.). Hugging Face Open LLM Leaderboard. Retrieved from https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
** Hendrycks, D., Burns, C., Kadavath, S., et al. (2021). MMLU: Measuring Massive Multitask Language Understanding. arXiv preprint arXiv:2009.03300. Available at: https://arxiv.org/abs/2009.03300
** Symflower. (2024, July 2). How does LLM benchmarking work? An introduction to evaluating models. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFZBrNWitJvZ254iSeeyxMHDG92-rnDR5AW9UGBaTgYqVasZpRn90XXl0iOXgxP2n0onVctRMzTTPFl5qjpt1rRshnuIUdsVOf6Ub32xjHZo9GXuT_DKBipB8aO9kOwTv_NpnHxkym4rG5bdvIaxTprh9oFNJg2fnoW
** Confident AI. (2025, September 1). LLM Evaluation Metrics: The Ultimate LLM Evaluation Guide. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQE8kyq5LguoUk691QGn8lckt3dseaDm106Ahyn4_IJJ0Z_IcXxN_KJVC0a1m9NxMXkNbLFSF1J4tL9IA7mWlnf2SAIqEUG8GTMStwIDVgbmNOnDOQUIf0_MM1Syr-mqTWg6A6L1Z-ZXOcuYOsxdpJrNy6NfojXEGJD8s5ZbITFqCC8xkFeqk1fsTE7WtgnX_jGKXZQVnEQ3QDaQ
** SuperAnnotate. (2025, June 25). LLM Evaluation: Frameworks, Metrics, and Best Practices. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHLXY5eYVpT4E_aAHOzrfRoElightO2e55DmQ_BIS5G_FxXcsRsmGqRxXQjAV0v3uMGfNwAYmQ4M2uzbvU_wH0MSZBN9zcnUkwJSJCqdAHgMSN1_ukorjQLDKewgBTGGJOwMQgrdHLlAEbdc832e8BJGfg=
** IBM. (2024, June 25). What Are LLM Benchmarks? Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEVMzh4AI8hQfPc4qC1xjvLCnwuHipjm-i29HxYkp21v8qIVhi8pKdudK8wR70pvFQacg1o-CsBmZbmbp2kzmPb_qkRAnuPIDIPA_xDg_DmSi4tfR2lvzg3qiE3fBEUtbso4wwbb3ezkbhr
** Orq.ai. (2025, February 26). LLM Benchmarks Explained: Significance, Metrics & Challenges. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFmlFnRMH-wh0fIQ4S-yxpOK1Aw-dmF7oVPzZNw7ZMtBohEjgRhBaNLC-_LQ6tsldm0vDjszlNFq-Jlk5nnqzDDyO-skKMc5Mw8hZN-pFDxXHbv2zUgSh6kAm3Mg=
** Comet. (2025, January 3). LLM Evaluation Metrics Every Developer Should Know. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHELhXS9rFikrt-LVYOccg4IzZyVtyqgz23CCclUZAnxW1yl-EmooEbvl1zCdG3Dhq1m1uhmr7UkJCh_MPGi-1SyQJwTGbGHHdaJcKQC0C8oPjjK49gUnIx9aY_L8gTzn5VOWII6vcIOxMA0JV16QrHLN1E_rFfjxfTqtx3UCoWw9k4-cUniAB4DFSVMOfv
** Tableau. (n.d.). 벤치마크 – 외부에서 기준점을 찾다. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHPaLJQ1wtqRZY7Jh5-N5eeMiAKHBWC4iwHY8ZoOhNzev_iTLQFSIyslSfxe7c7Hc7cLER6oKOwOs52kMh--YiLhRgCL93lvoprlaq5V2yjL1js6K-0Cz4Wm2rhMCmUxVTxd971A4HfQePAD0C2JxOFxSE=
** 가디의 tech 스터디. (2024, May 21). [LLM Evaluation] LLM 성능 평가 방법 : Metric, Benchmark, LLM-as-a-judge 등. Tistory. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFwuuOinMkGdbBb79_pvt9QdseTdvNw1YvY8KDti41oOMyDM2VGisO9iFEQsMt9Ww-oFf2sRrgqKhfDJVaQqnF-FniEaEEHsp1zDy-HMIDQn6dbND6zeO4u
** 셀렉트스타. (2024, August 28). LLM 평가란? 셀렉트스타의 AI 성능 평가 방법. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFRnHKwOGveoOr4zZ82Ocl8ScWSuGxYPtSpEr1-7qvbHxQeQOMxnfNQGspSHhlxOdEYJJU9OjuV0hswvnX69UTtBI_3TjPwZ2HK8BWk1HQjR-9CDs-W6ofcm2cDiepMCrQ1jCvFLljmRCjqbVqvuZ8nWN4=
** 테크원의 IT 테크 용어 사전. (2023, June 16). 벤치마크(Benchmark)란?. Tistory. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFHvsXftZDDk2pIlNnBT_SV7jU2lLEw6FHmc6D5dkflmISjLSgY2dBPKNBwF4G5a-fYp4ZhgXz4B1pvGmF1YGeoUefvhfXFLwhnX1Rrn2Zt_51L0X5isSo=
** Microsoft Learn. (2024, June 25). A list of metrics for evaluating LLM-generated content. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFi5U_LB0HOElrxliJzSzxBpKl9paXPE5QthvTznuAGgWRtNnhJgdrWMQkVATIK8jjZur2cZekWYJpj5dKIcav_7VU3Oy9PK89xgyuQkSdtv-tgzJ7q-vsVkG8ws-uMWjrFi_vh52ugg6QgVJ-ARb92Fkp38vgvRi7iIz62jX-Ql6v3TDp3VPv1qWMj1sxRW0wXUA0Q1UBPip_LfSMyE9uGoHx2ucbOTn5ySD_O5FRefFmAgOccry7y8zVPfQ0=
** Hugging Face. (n.d.). Open LLM Leaderboard. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEU3AU0GBdJNeE-lcgXx-Yn11Cj3SBBYc7y7zM2jDk1HeEqR_Wbok7wyCbkaUg4NPpr3NgOxzEEGXGg3GAZgX4dD3vRHwzIfbjkPf31WnTmbWAl65tCn39VLhteuEKMMeXnEmjU8wI=
** Arize AI. (n.d.). The Definitive Guide to LLM Evaluation. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHj-udpdUpPJ5IVtpVVE7mGn0dt40CBeLqFL8769hMdb9I6UNb7RfznAg1FmT_R7oDVrCROonzuf0wWD0XH7oMG9a_qLPqe6f_6POiH1ngs3baOsj6bR8rUG1o-4w==
** Park, S., Moon, J., Kim, S., et al. (2021). KLUE: Korean Language Understanding Evaluation. arXiv preprint arXiv:2105.09680. Retrieved from https://arxiv.org/abs/2105.09680
** Express Computer. (2024, November 27). Shaping the Future of AI Benchmarking - Trends & Challenges. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHxLu4vgJtAGREMFxdesz5xUnmiShXIMF5aRGoNsXgoInn-2phylnIpqCP_2RWoGYmkChEJ-XBnxlvxwsU7f2CjyfXzNCsaBIizbm_PhH0sD4bWPcNGEjUAyFgEKQqXpkFxC0rqxW2VUWfzWRg1Q0yG6PLvqok0qg8bOJmVzcYLNyA_VMXmUkUvHnacMzEi3PO_2RRvvkmnaJVFmsbzagHRjJnr1GQ=
** NeurIPS Datasets and Benchmarks 1 (2021). KLUE: Korean Language Understanding Evaluation. OpenReview.net. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHa9mAEbVQJ_tysuLHBbxcry0vobgu8tQbXEVzOFWv93AdlQE-MWNgQDV0wcG4grVMREPkciBgc1JAxOe--zuXT7oCYyS6IRJ6PgiggRoANP_cbirJc56Ozp4pkinDlYnWuPGwyX6lDDDpTf_nGmHtoMCFLk-49nhQIr0rnlWs8hyh6Pj91TFn8kpEnNKiGMzZPZ766ljE_gTAciu_pO8hJzQxU5KrdaooI8U_w2UymNtrXxg==
** Comparables.ai. (n.d.). Breakthroughs in Benchmarking Analysis: Exploring the Latest Industry Trends. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGRlJcGowMTLqAeGMHxqP8472yTZbfMvMYUp6nM-I0GAAp-DJOcC6KXHKF6miWjj8d-B2Jb_x53HSsM533vVlQioCKb_hcuTuHJd6z2bLaSPoSwaHRIsvTooO6uYZ656cq4LkLxr7B8f9gwCIpKN0WuDRSOqCgVkcb5RIA3w7dbuO23GdWAsFDkhR8NkWqLUxNn_1OBgpIsvjGTgGyVQRwLScbRhxJq
** everything i care about. (2021, June 29). 가설공사 기준점(bench mark) / 벤치마크. Tistory. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFrqJNyR5E3lNLiMCdBcDsp3QJLK8OkSCzLMFQi24wkI79T2V1LDETQ5D8W5cNm5D_MTpaEPlsvbv1AvImlZxzpzi5rGdyluHloMsAjjCwlLjjd1RQr6Mq1mtJvk9-KiOkrkBE3UrQA3h4L8ONsewe5Z3R17A_wn3nbCx1GuW_QQ9Z0LLUFzdxjgxd-kbQtNwJsPQhualsOPylauD1rNLa6MKheCH4xk8c9yxnEU06kyDZf1JESktkV_ODXEJjlCh_7pkuE4URrhKv6pZtMNubxUvQ==
** 위키백과. (n.d.). 벤치마크 (컴퓨팅). Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFYsYjFwJiW1kHYfL2K0umd1dSkuon6kEB-jzamZSJJQhF-m3KxGWGsxUHe3iAIAEHp8rBTwgOyqjDdWF_EPy1omVEXOizQBcA1-cYRVCDSoGEDoKDo_RwKyYLxHXnFJ1Rjwr1jlCDYmAJG5ZXNk6H_Cfp4iOuzne5mACd9BrRHU2slt-u78zKmZtkaEW6CbXJ3RJDFHEcn0dQH5w==
** KAIST. (n.d.). KLUE: Korean Language Understanding Evaluation. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHVLqU3EX9VxX9IesDQ4sbo11KogXzlBJEKUZA2ljgQjRxT1_Rtmrqj6jZ-Kr3RSNluTP91YBR9kWLAYqo1uE4lSec_IcwlrXWhOM-nmsOvqKH_b-uGcGo_k6pfRumW658z_dGwAVVzxV_nnJrMvvECZJvgF7R5sJng8xIZFx0koSwTWCgxlOpBS_BxBF3vZKXG
** OpenReview. (2021, October 11). KLUE: Korean Language Understanding Evaluation. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEDQWY7JHsGHLQUktcoOdungl9zRV5ccw2RJ8PRs9Zg0I-pvXN38hOnDwaJdymhhhFtie4_q4FsRqZG1V8HPvk7uYG9d7elVOuZYt0WhUxJG-Q3qNFIYPJ-I1ne11VYm-R6qjfLvFU=
** 위키백과. (n.d.). 벤치마킹. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQEyPFyGfc-Cj8ausBWvJpTcRT6NxBUeV7TieDZbWH27esdqTR78OgvK-ppYmb5BdaaVe2hUcnx3RqJ9OuVYbfow4Vq6x22-gv0MEbCyd4z4OIcVKjrj9DBsUj2FnT_pDVG1gnAQvFE8zZRhNyuvFJpk43iBPkEtFQaE-ykPCA==
** FasterCapital. (2024, March 5). 벤치마킹: 벤치마크를 사용하여 총 수익률 성과 평가. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQE2x8fFpuWKTuU2uXX9i2-VRL47kmG1AGLHw8uEF_Nmppd1jKLs9vLZzOzsgAIlu9h122ZHIkzcwXAr2VZqS0qSh904GsyJXdW_3tFlCypNQQb6h4iwY74TfmMtXvGk87b3MAbXLZLc91ydVly4WOmSZs7fjBtDDfnJjVfm0tvTmPih21-W37oEXS_enEQWjEmyF0MJFjMhxJUVQUd9LvjfLZThIapx8D-wB_2pR44xGpsCzhhcg_XVBKsPMXdTTWtcnluLqZFdP1GLLmBvXGPqx_Q8KqCTO2CsX0hXUZR5eZq-fz0RUq8Ynbwcam9q72g3_tNBUqMW6gQdrA4eP0HThbD0LHUepGPAbfi7CEDhZ810MJm-3_q4O9K4Zs1a_hHxGHGmu6fmqsx
** GitHub. (n.d.). KLUE - Korean NLU Benchmark. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGnpKsILvNKXlqANh9rb7-aQnqleA-StoCblaPsQrgY2W3H-AsKgYpP-0thYBppNp12B1pwk51HvCb9j8KlU_OqObhWX74d3s5oXZIajLd5P9tonbLKuYKaYpAqGlJmAG5u
** IBM. (n.d.). LLM 평가: AI 모델 테스트가 중요한 이유. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQErzVxMhE1J1xPN7iMxEGoHZIW1oJoSyFvOAQ74y0WrHIqaHe0KVaV1mpaly4aK-F7JRNGYU3aJmPm5Wt9Nsq5eHM5oUyRZ18NioZ-DVdAdsy4X-FrHKLr3OxGSNIuRtbj3x_pwXF6P8r7PGmdXM4TDkzU=
** 주식 벤치마크란 무엇인가? 왜 벤치마크가 개별 수익률보다 중요한가? (2025, April 5). Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFXTQEXO__jlX1yn0j07gKLzW4kj6Zj8-jsDq9tBbNCHuYHxHIy7NMYzMmcVXYIkPIxzrBGDeIh6uvlnxKWMaTPvvj3Hgwom9vAi9nqTMQqctDKSz625le1G1azN8iYKHQwqVZjSe_bdcfI012h8napLkHGe2fKVEX-RgfCRnlHGqiwNB7Kam0930DKFt-xr19B31Y=
** CaseDonebyAI. (2024, July 18). Open-LLM Leaderboard 2.0-New Benchmarks from HuggingFace. YouTube. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGld6smUwYYakFJz83x9LEwWLlUUmffjc3UTbd7DdHDmfueblg14ojUvJtHSw67-Dy1douW7QrIUb-RQMkzajbeyS1qNC1lZcyOdR3ddkAxhwsBfU6by9dQZgD_HCpm8l_Lu0eBxoo=
** ClickUp. (2024, December 7). 최적의 결과를 위한 효과적인 LLM 평가 수행 방법. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQE3b6AsC8-qoa1SCqk63vvoOGG_zeGAxwJyWFcF7E8jMN0Pu6Cs_R1GoAhlHypbHMYYz44yGzIyUQWaoIzXehV7rbzhKjF-40ZuRug2nOpyXyhjKL8EcFMQHOpAH8JH22NUScbBIpRNhQVo7X8=
** AI코리아 커뮤니티. (2024, May 4). 인공지능 평가의 핵심: 벤치마크(Benchmark)의 모든 것. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGzfBfPrlonDpovjHKyAvPRWlVFKrCSm6JNh2fcZ29Pj0R-5mdk0tj1WB6jElclqPbNd-6kM239_pcd6_ZKXp2CnTtAQWKKWvr9XhyZKF0thx0ZIkhtooJrwRpOWE8XxTP4WTqNPAcO4K0KZfhW9ppXLh3foHB6kMk57cCZvEXGrXfxdQGz5_RPW_2AXUaGK_LdzgHp3PcEgrBFkVzhgnNWA7IKQtPhHfebvxlmAQOEwAGkKKK53Wa3JlAHB9jJjCG9S8g5SW7Js8W_Ntp-mH_8ZOqzzySeD5C1VppQ9cLgnuvQV7xU5NXp0TImJNyjxwpV-hsr1sSZjpFau7-jLeXlahubLL4Vig==
** Das, N. (2023, November 25). Simplifying Huggingface's open LLM leaderboard to select the right model. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQFbRgRNjQ0MyxpqzFPej8ph53f5drm1iozQi-IoHXxX6jonrlthcD65BL9-AI2gozB7kw1fu5SscWHkgPCf4J7XJpbdLIzfuXwkKXs2bOPTpvnRQtrDTNxYr7Vegp0ENrrHlkH3gy0ju4FO4h04Q248CNncczw_j1l4l1u-wGN5MFdvJEq0nBUYaOchzJ6XERjKeFM94ePRHgjZE3PqjN3-EDOXKGoW5VKhgZ0VqmV5
** 나무위키. (2025, September 17). 벤치마크. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQH4V85KpENGZjGEvGdHNR9aoela2oGhd81SeBkpVRLG9Er1HdRD1c_mHs8NOwzgwJeCYQ6p7Z4xG82Mls-PC-KJsp97o-00dWt2Ncm8q-7hHBFiMNSiK03vc-FniccMWavKJ1Ebfpb5eb8AkAd2HXdKWArq
** 벤치마크. (2025, July 17). [LLM] LLM 모델 평가 방법 - 벤치마크. Tistory. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHQffCOExsjNlVv-QlBszUl3nWgXbhZIqQ8MC9QXlyLqi0D0DLY0DxPRV1H_keSivLz2RbBPfkfDHUH9xqQvDva4B9RyGJ6okxVMxGLJmlfRNMx8I0HY9NHZM_krqvm1M4F4W5YabTAkY83AhE-_PB3zlTTebwt4cSW4rx4Mkk_Xs4hRoXRtgx0MyZSfy58nPlcdQAS7QmeNuEmvkP_HC26EiY-1KEbWv1GDPMB_Ig6jlSaY4zedWcKXAl80-lf9GdjRsEXFV4=
** Hugging Face. (n.d.). Open LLM Leaderboard Archived. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHJR6dyU0Uydv7g_vf3R_gSE4H4UzDdVBL-Yi47trqOigTsEuSUTC1Wl_rq7JD_2gqoyvfP5-pjcy1DglCa8mOIZVX9eFb6c_j2mV0aeYyz598RwQ-x4yrZl-PTauxTXifuSxAVPpwyZ8VkchYh1MD3pMb2z_nQWHURH5ZswT1zLkVP
** AI Flux. (2024, June 26). Chinese AI models storm Hugging Face's Open LLM Leaderboard!. YouTube. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQELkqssaqz0OYPO9Kda5hj-aIaCAF4Wefp11RzgRqCRDQ0VWxaJPs_l1NI0QWfKFKc8RL-EWgOOnDwdsK2_INhtS6BYUCa-FBGCKhd0V_ySau7qI5zqCmhSZiVxQx-svP00XYF-5Xc=
** AI 코리아 커뮤니티 뉴스레터. (2024, April 23). LLM(언어모델) Benchmark 항목, 용어 정리. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGAMTd-VBeGTrNIZaaEqWKlicSTCL1WrdfE3tBvxaUmZFy453W2MzOzQfPo6-ejv1PqnuHXYJ9bzIPpWB1vyAZNO8fsAY7j-kPhWfYKUTlM_QLuUSipfJVPC6mAl7s4IQSh67nInWKVIxfUzQZReYQAMkt36ypjh0Oe-6fsbbjqKDxJ1HU4tw==
** Digital Watch Observatory. (2025, September 22). Emerging AI trends that will define 2026. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHIlIU_gEfA_8-o67ppahsxKMB_2YyT-uIvd-6B56aUITSD6mpEJe-yXxCkWtV3PEf2SfU9ZTCj2G_aTDFR0vg0kdYUu8s1g2sH88pGUC15QAao0TZnzHv3zhbAXAST-DT8EEdJAUSMTBnYhtSBtCsTuwQDb3Reml2xHk4i0Q==
** Novita AI Blog. (2025, January 9). 이해 LLM 메트릭: 모델 성능 향상. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQG9YsqdX-hCbkoteDrPnCrbArdq30QhqzgF426EL8UVpxZ6_GkkCzWe_Qs63V3Mw8iJPIjtKup4T_YAu6k06JiEAi1HIldYSe5NunbcTfZS6-H_afUUB1ROXjtLoo6EuubAUpgSJJKet_pRQJC-zAlrVi9i2N7qeTyXyUgGUDsS1SvjzCL7Jy7c
** Gartner. (n.d.). Emerging Technologies and Trends for Tech Product Leaders. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQHx937i6SbnJ6IMfLK9r1dO6JQ734iDUpI3xr_weAQwjULwcjTCeM69u0Qxv-YOIG4tSQ1Dg22zHYOMZ2BHm_iSswx7konaHWb1I0jQVSUa-RlelgzXvwbYX6SNJCPcMZguB55aMzmFulLSSyOT7cftt-es2Me5aG6_iGnrwkBbkdAsE4Mcrg==
** IBM. (n.d.). The Top Artificial Intelligence Trends. Retrieved from https://vertexaisearch.cloud.google.com/grounding-api-redirect/AUZIYQGVtbIbklIkFB-o8-h_qVxiql0tk9kKLBIXaas_oJLW3BfXn7ndzEZHngghDr52fzx92cwzn6jzri21XizNA5lK4wnaz1eDyDPw35uZkusoAQSIjRGYHv-rWFbymStQLAAGYep9rWF-4YLtvAWrVayviEB-kF69WA04Wpnt
Disclaimer: 이 글은 2025년 9월 현재의 정보를 바탕으로 작성되었으며, 기술 발전과 함께 내용은 변경될 수 있다.
입니다. 그러나 OpenAI가 이 프로젝트에 비밀리에 자금을 지원하고 데이터 접근 권한을 가졌다는 사실이 드러나면서, 벤치마크의 공정성과 신뢰성이 의심받고 있습니다. OpenAI는 o3 모델을 FrontierMath에서 시험하며 25.2%라는 높은 성과를 기록했지만, 이러한 성과가 과연 진정한 AI의 능력을 반영하는 것인지에 대한 의문이 제기되었습니다.
어떻게 이러한 비밀 자금 지원과 데이터 접근이 가능했을까요? OpenAI
OpenAI
OpenAI: 인류를 위한 인공지능의 비전과 혁신
목차
OpenAI 개요 및 설립 배경
OpenAI의 역사 및 발전 과정
핵심 기술 및 인공지능 모델
3.1. 언어 모델 (GPT 시리즈)
3.2. 멀티모달 및 기타 모델
주요 활용 사례 및 응용 서비스
4.1. 텍스트 및 대화형 AI (ChatGPT)
4.2. 이미지 및 비디오 생성 AI (DALL·E, Sora)
4.3. 음성 및 기타 응용 서비스
현재 동향 및 주요 이슈
미래 전망
1. OpenAI 개요 및 설립 배경
OpenAI는 인류 전체에 이익이 되는 안전한 범용 인공지능(AGI, Artificial General Intelligence)을 개발하는 것을 목표로 2015년 12월 8일 설립된 미국의 인공지능 연구 기업이다. 일론 머스크(Elon Musk), 샘 알트만(Sam Altman), 그렉 브록만(Greg Brockman), 일리야 수츠케버(Ilya Sutskever) 등이 공동 설립을 주도했으며, 초기에는 구글과 같은 폐쇄형 인공지능 개발에 대항하여 인공지능 기술을 오픈 소스로 공개하겠다는 비영리 단체로 시작하였다. 설립 당시 아마존 웹 서비스, 인포시스 등으로부터 총 10억 달러의 기부금을 약속받으며 막대한 자금을 확보하였다.
OpenAI의 설립 동기는 인공지능의 부주의한 사용과 남용으로 발생할 수 있는 재앙적 위험을 예방하고, 인류에게 유익한 방향으로 인공지능을 발전시키기 위함이었다. 그러나 AGI 개발에 필요한 막대한 자본과 인프라 비용을 감당하기 위해 2019년 비영리 연구소에서 '캡드-이익(capped-profit)' 구조의 영리 법인인 OpenAI LP(Limited Partnership)로 전환하였다. 이 전환은 투자자에게 수익률 상한선을 두어 공익적 목표를 유지하면서도 자본을 유치할 수 있도록 설계되었으며, 마이크로소프트와의 대규모 파트너십을 통해 연구 자금을 조달하는 계기가 되었다. 2025년 10월에는 비영리 재단이 영리 법인을 감독하는 이중 체계를 갖춘 공익 법인(Public Benefit Corporation, PBC)으로 구조 개편을 마무리하였다.
2. OpenAI의 역사 및 발전 과정
OpenAI는 설립 이후 인공지능 연구 및 개발 분야에서 수많은 이정표를 세우며 빠르게 성장하였다.
2015년 12월: 일론 머스크, 샘 알트만 등을 주축으로 OpenAI 설립.
2016년 4월: 강화 학습 연구를 위한 오픈 소스 툴킷인 'OpenAI Gym'을 출시하여 인공지능 개발의 문턱을 낮추었다.
2017년 8월: 인기 비디오 게임 '도타 2(Dota 2)'에서 인간 프로 선수와 1대1 대결을 펼쳐 승리하는 AI를 시연하며 인공지능의 강력한 학습 능력을 선보였다.
2018년: 대규모 언어 모델의 시대를 연 'GPT-1(Generative Pre-trained Transformer 1)'을 발표하며 자연어 처리 분야에 혁신을 가져왔다.
2019년: 비영리에서 '캡드-이익' 영리 법인으로 전환하고, 마이크로소프트로부터 대규모 투자를 유치하며 전략적 파트너십을 구축하였다.
2021년: 텍스트 설명을 기반으로 사실적인 이미지를 생성하는 멀티모달 모델 'DALL·E'를 공개하며 생성형 AI의 가능성을 확장하였다.
2022년 11월: 대화형 인공지능 챗봇 'ChatGPT'를 출시하여 전 세계적인 센세이션을 일으켰으며, 인공지능 기술의 대중화를 이끌었다. ChatGPT는 출시 9개월 만에 포춘 500대 기업의 80% 이상이 도입하는 등 빠르게 확산되었다.
2023년: 텍스트와 이미지를 동시에 이해하고 생성하는 멀티모달 모델 'GPT-4'를 발표하며 성능을 더욱 고도화하였다. 같은 해 11월 샘 알트만 CEO 축출 사태가 발생했으나, 일주일 만에 복귀하며 경영 안정화를 꾀하였다.
2024년: 텍스트를 통해 고품질 비디오를 생성하는 'Sora'를 공개하며 영상 생성 AI 분야의 새로운 지평을 열었다. 또한, 일론 머스크가 OpenAI를 상대로 초기 설립 목적 위반을 주장하며 소송을 제기하는 등 법적 분쟁에 휘말리기도 했다.
2025년: 'GPT-5' 및 'GPT-5.1'을 출시하며 언어 모델의 대화 품질과 추론 능력을 더욱 향상시켰다. 또한, 추론형 모델인 o3, o4-mini 등을 공개하며 복잡한 문제 해결 능력을 강화하였다. 이와 함께 대규모 데이터센터 확장을 위한 '스타게이트 프로젝트'를 본격화하며 AI 인프라 구축에 박차를 가하고 있다.
3. 핵심 기술 및 인공지능 모델
OpenAI는 다양한 인공지능 모델을 개발하여 기술 혁신을 이끌고 있으며, 특히 GPT 시리즈와 멀티모달 모델들은 OpenAI 기술력의 핵심을 이룬다.
3.1. 언어 모델 (GPT 시리즈)
GPT(Generative Pre-trained Transformer) 시리즈는 OpenAI의 대표적인 언어 모델로, 방대한 텍스트 데이터를 사전 학습하여 인간과 유사한 텍스트를 생성하고 이해하는 능력을 갖추고 있다.
GPT-1 (2018년): 트랜스포머 아키텍처를 기반으로 한 최초의 생성형 사전 학습 모델로, 자연어 처리 분야의 가능성을 제시하였다.
GPT-2 (2019년): GPT-1보다 훨씬 큰 규모의 데이터를 학습하여 더욱 자연스러운 텍스트 생성 능력을 보여주었으며, 특정 작업에 대한 미세 조정 없이도 높은 성능을 달성하는 제로샷(zero-shot) 학습의 잠재력을 입증하였다.
GPT-3 (2020년): 1,750억 개의 파라미터를 가진 거대 모델로, 다양한 언어 작업을 수행하는 데 뛰어난 성능을 보였다. 소수의 예시만으로도 새로운 작업을 학습하는 퓨샷(few-shot) 학습 능력을 통해 범용성을 크게 높였다.
GPT-4 (2023년): 텍스트뿐만 아니라 이미지 입력도 처리할 수 있는 멀티모달 능력을 갖추었으며, 더욱 정확하고 창의적인 응답을 제공한다. 복잡한 추론과 문제 해결 능력에서 이전 모델들을 뛰어넘는 성능을 보여주었다.
GPT-5 (2025년): 한국어 성능 및 실무 활용성이 강화되었으며, AGI로 향하는 중요한 단계로 평가받고 있다.
GPT-5.1 (2025년 11월): GPT-5의 업그레이드 버전으로, 대화 품질 향상과 사용자 맞춤 기능 강화가 주된 특징이다. 특히 '적응형 추론(adaptive reasoning)' 기능을 통해 쿼리의 복잡성을 실시간으로 평가하고 사고 시간을 조절하여 어려운 질문에는 충분히 생각하고 간단한 질문에는 빠르게 답하는 방식으로 작동한다. 또한, '향상된 지시 준수(enhanced instruction following)' 기능을 통해 사용자의 지시를 더 정확히 따르며, 응답 스타일을 '전문가형(Professional)', '솔직형(Candid)', '개성형(Quirky)' 등으로 세밀하게 조정할 수 있는 '스타일 프리셋' 기능을 제공한다. 이는 GPT-5 출시 초기의 사용자 피드백을 반영하여 모델을 더욱 따뜻하고 지능적이며 지시에 충실하게 만든 결과이다.
3.2. 멀티모달 및 기타 모델
OpenAI는 언어 모델 외에도 다양한 인공지능 모델을 개발하여 여러 분야에서 혁신을 이끌고 있다.
Whisper: 대규모 오디오 데이터를 학습하여 다양한 언어의 음성을 텍스트로 정확하게 변환하는 음성 인식 모델이다. 노이즈가 있는 환경에서도 뛰어난 성능을 발휘한다.
Codex: 자연어 명령을 코드로 변환하는 모델로, 프로그래머의 생산성을 크게 향상시킨다. GitHub Copilot의 기반 기술로 활용되고 있다.
DALL·E: 텍스트 프롬프트(명령어)를 통해 사실적이거나 예술적인 이미지를 생성하는 모델이다. 이미지 생성의 새로운 가능성을 열었으며, 창의적인 콘텐츠 제작에 활용된다.
Sora: 텍스트 프롬프트를 기반으로 고품질의 사실적인 비디오를 생성하는 모델이다. 복잡한 장면과 다양한 캐릭터, 특정 움직임을 포함하는 비디오를 만들 수 있어 영화, 광고 등 영상 콘텐츠 제작에 혁신을 가져올 것으로 기대된다.
o1, o3, o4 시리즈 (추론형 모델): 2025년 4월에 공식 발표된 o3와 o4-mini 모델은 단순 텍스트 생성을 넘어 "생각하는 AI"를 지향하는 새로운 세대의 추론 모델이다. 이 모델들은 복잡한 작업을 논리적으로 추론하고 해결하는 데 특화되어 있으며, '사고의 연쇄(Chain of Thought)' 추론 기법을 모델 내부에 직접 통합하여 문제를 여러 단계로 나누어 해결한다.
o3: 가장 크고 유능한 o-시리즈 모델로, 복잡한 분석 및 멀티스텝 작업에 최적화되어 코딩, 수학, 과학, 시각 분석 등 여러 영역에서 최첨단 성능을 달성한다.
o3-pro: o3 모델의 한 버전으로, 더 오랜 시간 동안 사고하여 더욱 정교한 추론을 수행한다.
o4-mini: 속도와 비용 효율성에 최적화된 소형 추론 모델로, 빠른 응답이 필요한 자동화 작업에 적합하다. 특히 수학, 코딩, 시각 문제 해결 능력이 뛰어나다.
o4-mini-high: o4-mini 모델의 한 버전으로, o4-mini보다 더 오랜 시간 사고하여 성능을 향상시킨다.
이 추론 모델들은 멀티모달 추론 능력과 자동 도구 활용 능력을 갖추고 있어, 사용자가 질문할 때 필요한 도구(웹 검색, 파일 분석, 코드 실행 등)를 스스로 판단하고 실행할 수 있다.
4. 주요 활용 사례 및 응용 서비스
OpenAI의 인공지능 모델은 다양한 산업 분야와 실생활에 적용되어 혁신적인 변화를 가져오고 있다.
4.1. 텍스트 및 대화형 AI (ChatGPT)
ChatGPT는 OpenAI의 GPT 시리즈를 기반으로 한 대화형 인공지능 서비스로, 사용자들의 질문에 인간처럼 자연스럽게 답변하는 능력을 갖추고 있다.
기능: 정보 검색, 콘텐츠 생성(기사, 시, 코드 등), 번역, 요약, 아이디어 브레인스토밍, 복잡한 문제 해결 지원 등 광범위한 기능을 제공한다.
활용 분야:
고객 지원: 기업들은 ChatGPT를 활용하여 챗봇을 구축하고 고객 문의에 24시간 응대하며, 상담원의 업무 부담을 줄이고 고객 만족도를 높인다.
콘텐츠 생성: 마케팅, 저널리즘, 교육 등 다양한 분야에서 콘텐츠 초안 작성, 아이디어 구상, 보고서 요약 등에 활용되어 생산성을 향상시킨다.
교육: 학생들은 학습 자료 요약, 질문 답변, 작문 연습 등에 ChatGPT를 활용하여 학습 효율을 높일 수 있다.
소프트웨어 개발: 개발자들은 코드 생성, 디버깅, 문서화 등에 ChatGPT를 활용하여 개발 시간을 단축하고 오류를 줄인다.
ChatGPT Enterprise: 기업 고객을 위해 특별히 설계된 유료 서비스로, 데이터 보안 강화, 더 빠른 분석 및 응답 속도, 무제한 고급 데이터 분석 기능 등을 제공한다. 기업 내 직원들의 ChatGPT 사용을 관리할 수 있는 관리자 페이지도 함께 제공되어 내부 직원 인증 및 사용 통계 관리가 가능하다. OpenAI는 ChatGPT Enterprise를 통해 이미 100만 개 이상의 기업 고객을 확보했다고 밝혔다. 미국 연방 기관에는 챗GPT 엔터프라이즈를 1달러에 제공하며 AI 정부 시장 경쟁을 예고하기도 했다.
4.2. 이미지 및 비디오 생성 AI (DALL·E, Sora)
DALL·E와 Sora는 텍스트 프롬프트를 통해 시각적 콘텐츠를 생성하는 AI 모델로, 창의적인 콘텐츠 제작 분야에 혁신을 가져오고 있다.
DALL·E: 텍스트 설명을 기반으로 독창적인 이미지를 생성한다. 예를 들어, "우주복을 입은 강아지가 피자를 먹는 모습"과 같은 명령만으로도 다양한 스타일의 이미지를 만들어낼 수 있다. 이는 디자이너, 예술가, 마케터 등이 아이디어를 시각화하고 새로운 콘텐츠를 빠르게 제작하는 데 활용된다.
Sora: DALL·E의 비디오 버전으로, 텍스트 프롬프트만으로 최대 1분 길이의 사실적이고 창의적인 비디오를 생성한다. 이는 영화 제작, 광고, 게임 개발 등 다양한 분야에서 스토리보드 제작, 시각화, 특수 효과 구현 등에 활용되어 시각적 콘텐츠 제작의 새로운 가능성을 제시한다.
4.3. 음성 및 기타 응용 서비스
OpenAI는 텍스트 및 시각 콘텐츠 외에도 다양한 응용 소프트웨어와 서비스를 개발하여 인공지능의 적용 범위를 확장하고 있다.
Voice Engine (음성 생성): 짧은 오디오 샘플만으로도 특정 인물의 목소리를 복제하여 새로운 음성 콘텐츠를 생성하는 기술이다. 오디오북 제작, 개인화된 음성 비서, 장애인을 위한 음성 지원 등 다양한 분야에서 활용될 수 있다.
SearchGPT (인공지능 검색 엔진): 기존의 키워드 기반 검색을 넘어, 사용자의 질문 의도를 파악하고 대화형으로 정보를 제공하는 차세대 검색 엔진이다. 더 정확하고 맥락에 맞는 정보를 제공하여 검색 경험을 혁신할 것으로 기대된다.
Operator (인공지능 에이전트): 사용자의 복잡한 작업을 이해하고 여러 도구와 서비스를 연동하여 자동으로 처리하는 인공지능 에이전트이다. 예를 들어, "다음 주 회의 일정을 잡고 참석자들에게 알림을 보내줘"와 같은 명령을 수행할 수 있다.
Atlas (AI 브라우저): 인공지능 기능을 통합한 웹 브라우저로, 웹 콘텐츠 요약, 정보 추천, 개인화된 검색 경험 등을 제공하여 사용자의 웹 서핑 효율성을 높인다.
5. 현재 동향 및 주요 이슈
OpenAI는 급변하는 인공지능 산업의 최전선에서 다양한 동향과 이슈에 직면하고 있다.
GPT 스토어 운영: OpenAI는 사용자들이 자신만의 맞춤형 챗봇(GPTs)을 만들고 공유할 수 있는 'GPT 스토어'를 운영하고 있다. 이는 개발자와 사용자 커뮤니티의 참여를 유도하고, 챗GPT의 활용 범위를 더욱 넓히는 전략이다.
지배구조 변화: 2025년 10월, OpenAI는 비영리 재단이 영리 법인(OpenAI Group)을 소유하고 감독하는 이중 체계의 공익 법인(PBC)으로 구조 개편을 완료하였다. 이는 비영리 사명을 유지하면서도 막대한 자본 조달과 기업 인수를 통해 성장할 수 있는 유연성을 확보하기 위함이다. 마이크로소프트는 개편된 PBC 지분의 27%를 보유하게 되었으며, OpenAI 모델 및 제품의 지식재산권을 2032년까지 보유한다.
2023년 경영진 축출 사태: 2023년 11월, 샘 알트만 CEO가 이사회로부터 갑작스럽게 해고되는 초유의 사태가 발생했다. 이사회는 알트만이 "소통에 불성실했다"고 밝혔으나, 주요 원인은 알트만의 독단적인 리더십 방식과 AI 안전 문제에 대한 이사회와의 갈등 때문인 것으로 알려졌다. 일리야 수츠케버 수석 과학자가 임시 대표를 맡았으나, 수백 명의 직원이 알트만의 복귀를 요구하며 사임 위협을 하는 등 내부 혼란이 가중되었다. 결국 마이크로소프트의 중재와 직원들의 압력으로 알트만은 일주일 만에 CEO로 복귀하였다.
저작권 관련 소송: OpenAI는 챗GPT 학습 과정에서 저작권이 있는 콘텐츠를 무단으로 사용했다는 이유로 여러 언론사 및 작가들로부터 소송에 휘말리고 있다. 뉴욕타임스(NYT)와의 소송은 진행 중이며, 독일에서는 노래 가사 저작권 침해로 패소 판결을 받았으나 항소 가능성을 시사했다. 반면, 일부 뉴스 사이트(Raw Story, AlterNet)와의 소송에서는 원고들이 실제 피해를 입증하지 못했다는 이유로 승소하기도 했다. OpenAI는 AI의 데이터 학습이 저작권법이 허용하는 '공정 이용'에 해당한다고 주장하고 있다.
일론 머스크의 소송: 일론 머스크는 OpenAI가 초기 설립 목적이었던 '인류에게 이익이 되는 안전한 AGI 개발'이라는 비영리적 사명을 저버리고 상업적 이익을 추구하며 폐쇄형으로 운영되고 있다고 주장하며 2024년 2월 소송을 제기했다. 그는 OpenAI가 마이크로소프트와의 파트너십을 통해 부당 이득을 취하고 있다고 비판했으며, 이후 8월에 다시 소송을 재개했다. 또한, 2025년 11월에는 애플과 OpenAI의 파트너십이 반독점법을 위반한다고 주장하며 소송을 제기하기도 했다.
엔터프라이즈 시장 진출: OpenAI는 기업용 'ChatGPT Enterprise'를 출시하며 엔터프라이즈 시장 진출에 주력하고 있다. 이는 기업 고객의 데이터 보안 요구를 충족시키고, 대규모 조직에서 AI를 효율적으로 활용할 수 있도록 지원하기 위함이다.
데이터센터 확장 및 대규모 파트너십: OpenAI는 AI 인프라 프로젝트인 '스타게이트(Stargate)'를 통해 미국 내 5개 신규 데이터센터를 구축할 계획이며, 총 5,000억 달러(약 688조 원) 규모의 투자를 진행하고 있다. 오라클, 소프트뱅크 등과의 대규모 파트너십을 통해 7기가와트(GW) 이상의 컴퓨팅 용량을 확보하고, 2025년 말까지 10GW 달성을 목표로 하고 있다. 이는 AI 모델 학습 및 운영에 필요한 막대한 컴퓨팅 자원을 확보하기 위한 전략이다.
6. 미래 전망
OpenAI는 인공지능 기술 발전의 최전선에서 인류의 미래를 바꿀 잠재력을 가진 기업으로 평가받고 있다.
샘 알트만 CEO는 인공지능이 트랜지스터 발명에 비견될 만한 근본적인 기술 혁신이며, "지능이 미터로 측정하기에는 너무 저렴해지는(intelligence too cheap to meter)" 미래를 가져올 것이라고 확신한다. 그는 OpenAI가 2026년까지 세상에 새로운 통찰력을 도출할 수 있는 AI 시스템, 즉 AGI 개발에 상당히 근접했다고 주장하며, AI가 현대의 일자리, 에너지, 사회계약 개념을 근본적으로 바꿀 것이라고 내다보고 있다.
OpenAI는 가까운 미래에 AI가 코딩 업무의 대부분을 자동화할 것이며, 진정한 혁신은 AI가 스스로 목표를 설정하고 독립적으로 업무를 수행할 수 있는 '에이전틱 코딩(agentic coding)'이 실현될 때 일어날 것이라고 예측한다. 또한, 다양한 AI 서비스를 하나의 통합된 구독형 패키지(Consumer Bundle)로 제공하여 단순히 ChatGPT와 같은 인기 서비스뿐만 아니라, 전문가를 위한 고성능 프리미엄 AI 모델이나 연구용 고급 모델 등 다양한 계층적 제품군을 제공할 계획이다. 이는 단순한 연구 기관이나 API 제공자를 넘어 구글이나 애플과 같은 거대 기술 플랫폼으로 성장하려는 강한 의지를 보여준다.
OpenAI는 소비자 하드웨어 및 로봇 공학 분야로의 진출 가능성도 시사하고 있으며, AI 클라우드 제공업체로서의 비전도 가지고 있다. 이는 AI 기술을 다양한 형태로 실생활에 통합하고, AI 인프라를 통해 전 세계에 컴퓨팅 파워를 제공하겠다는 전략으로 해석될 수 있다.
그러나 이러한 비전과 함께 AI의 잠재적 위험성, 윤리적 문제, 그리고 막대한 에너지 및 자원 소비에 대한 도전 과제도 안고 있다. OpenAI는 안전하고 윤리적인 AI 개발을 강조하며, 이러한 도전 과제를 해결하고 인류 전체의 이익을 위한 AGI 개발이라는 궁극적인 목표를 달성하기 위해 지속적으로 노력할 것이다.
참고 문헌
전문가형,개성형말투 추가... 오픈AIGPT-5.1` 공개 - 디지털데일리 (2025-11-13).
[2] Open AI에 소송 제기한 일론 머스크, 그들의 오랜 관계 - 지식창고 (2024-03-28).
[3] GPT-5.1, 적응형 추론으로 대화·작업 성능 전면 업그레이드 - 지티티코리아 (2025-11-13).
[4] 오픈AI - 위키백과, 우리 모두의 백과사전.
[5] 샘 알트만의 인공지능 미래 비전 - 브런치.
[6] 전세계가 놀란 쿠데타, 여인의 변심 때문에 실패?...비밀 밝혀진 오픈AI 축출 사건 - 매일경제 (2025-03-30).
[7] 일론 머스크, 오픈AI 상대로 소송 재개...공익 배반 주장 - 인공지능신문 (2024-08-06).
[8] GPT-5.1 출시…"EQ 감성 더 늘었다" 유료 사용자 먼저 - 디지털투데이 (DigitalToday) (2025-11-13).
[9] 샘 알트만이 그리는 OpenAI의 미래 – 서비스, BM, AGI에 대한 전략 - 이바닥늬우스 (2025-03-29).
[10] 오픈AI, 일부 뉴스 사이트와 저작권 침해 소송서 승소 - AI타임스 (2024-11-09).
[11] 샘 알트먼, “AI가 바꿀 미래와 그 대가” – OpenAI의 비전과 현실 : 테크브루 뉴스 | NEWS (2025-06-12).
[12] 챗GPT, GPT-5.1로 업데이트… 오픈AI “더 똑똑하고 친근한 챗GPT로 진화” - AI 매터스 (2025-11-13).
[13] 오픈AI, 일부 美 언론사와 '저작권 침해' 소송서 승소 - 연합뉴스 (2024-11-09).
[14] [에디터픽] "최악의 경우 인류 멸종 수준 위협" …머스크, 오픈AI·올트먼에 소송하는 이유는? / YTN - YouTube (2024-08-07).
[15] Open AI - 런모어(Learnmore).
[16] GPT-5.1 이란? 모두가 주목하는 이유 - Apidog (2025-11-13).
[17] 오픈AI, 독일에서 노래 가사 저작권 소송 패소...항소 시사 / YTN - YouTube (2025-11-12).
[18] OpenAI, 5개 데이터센터에 5천억 달러 투자 계획 - 머니터링 (2025-09-23).
[19] OpenAI 샘 알트만 축출의 10시간 진실: 이사회 내부 고발과 리더십 갈등의 전말 (2025-11-07).
[20] OpenAI가 뉴스 웹사이트들이 제기한 저작권 소송에서 승소하며 주요 법적 승리를 거두다 (2024-11-08).
[21] OpenAI - 나무위키.
[22] [AI넷] [샘 알트먼 "OpenAI, 연간 매출 200억 달러 돌파... 2030년까지 수천억 달러로 성장 전망”] 향후 8년간 약 1조 4천억 달러 규모의 데이터센터 약정을 고려 중이라고 밝혔다 (2025-11-09).
[23] OpenAI는 어떻게 성장했는가? - 메일리 (2023-03-08).
[24] OpenAI 영리 전환: 비영리에서 영리 구조로의 전환이 의미하는 것 (2025-10-29).
[25] 오픈AI, 오라클과 연 3천억 달러 규모 스타게이트 데이터센터 계약 체결 - AI 매터스 (2025-07-23).
[26] 오픈AI의 운영 구조 변경 - 다투모 이밸 - 셀렉트스타 (2025-05-09).
[27] [AI넷] 유미포[뉴욕 타임즈 vs. OpenAI: 생성 AI의 저작권 논쟁 심화] 생성 AI 기술의 미래 (2025-01-17).
[28] 2025년 10월 샘 알트먼 인터뷰 & OpenAI DevDay 핵심 정리 [번역글] - GeekNews.
[29] 오픈AI·오라클·소프트뱅크, 5개 신규 AI 데이터센터 건설…5000억 달러 규모 '스타게이트 프로젝트' 본격화 - MS TODAY (2025-09-24).
[30] OpenAI 대표 샘 알트만의 5가지 논란과 챗GPT 54조 투자유치 - Re:catch (2024-07-23).
[31] What are OpenAI o3 and o4? - Zapier (2025-06-16).
[32] 1400조원 블록버스터 주식이 찾아온다…세계 최대 IPO 기반 마련한 오픈AI [뉴스 쉽게보기] (2025-11-07).
[33] 텍사스 법원, 머스크의 애플, OpenAI 상대 반독점 소송 인정 - 인베스팅닷컴 (2025-11-13).
[34] 일론 머스크와 오픈AI의 갈등:상업화와 윤리적 논란 - 飞书文档.
[35] 오픈AI, 영리법인 관할 형태로 전환 추진 - 전자신문 (2024-09-26).
[36] OpenAI의 ChatGPT 엔터프라이즈: 가격, 혜택 및 보안 - Cody.
[37] OpenAI, Oracle, SoftBank, 다섯 개의 신규 AI 데이터 센터 부지로 Stargate 확대 (2025-09-23).
[38] 오픈AI, 기업용 '챗GPT 엔터프라이즈' 내놨다...MS와 경쟁하나 - 조선일보 (2023-08-29).
[39] OpenAI, Broadcom과의 파트너십을 발표하여 10GW의 맞춤형 AI 칩 배포로 Broadcom 주가 급등!
[40] OpenAI o3 and o4 explained: Everything you need to know - TechTarget (2025-06-13).
[41] OpenAI, "가장 똑똑한 모델" o3·o4-mini 출시 - 곰곰히 생각하는 하루 (2025-04-17).
[42] ChatGPT 모델 o1, o3, 4o 비교 분석 - 돌돌 (2025-02-17).
[43] 챗GPT 엔터프라이즈, 기업들 대상으로 한 유료 AI 서비스의 등장 - 보안뉴스 (2023-09-11).
[44] OpenAI (r196 판) - 나무위키.
[45] OpenAI, o3 와 o4-mini 모델 공개 - GeekNews.
[46] [AI넷] [OpenAI, 미국 연방 기관에 'ChatGPT 엔터프라이즈' 1달러 공급…AI 정부 시장 경쟁 예고]인공지능(AI) 기술 기업 오픈AI(OpenAI)가 미국 연방 기관에 '챗GPT 엔터프라이즈(ChatGPT Enterprise)'를 단돈 1달러에 제공한다 (2025-08-11).
는 FrontierMath 개발에 자금을 제공했으나, 수학자 기여자들에게 이 사실을 알리지 않았습니다. 또한, OpenAI는 대부분의 데이터셋에 접근할 수 있었으며, 훈련에 사용하지 않겠다는 구두 약속만 있었을 뿐, 문서화된 보장은 없었습니다. 이로 인해 수학자들은 자신들의 기여가 어떻게 사용될지 몰랐고, 이는 윤리적·법적 불확실성을 초래했습니다.
커뮤니티의 반응은 강력했습니다. 수학자들과 AI 연구자들은 배신감을 느끼며 강한 비판을 쏟아냈습니다. 이 사태는 AI 개발자들의 윤리적 책임과 협업 시 명확한 소통의 필요성을 재차 강조하게 만들었습니다. AI 전문가들, 예를 들어 Gary Marcus는 OpenAI의 o3 모델 성능 발표가 과장되고, 과학적으로 신뢰할 수 없다고 비판했습니다.
이번 사건은 AI 벤치마크 프로젝트에 대한 규제 강화와 투명성 기준 마련의 필요성을 촉발할 수 있습니다. 앞으로 수학자 및 연구자들은 참여 전 자금 출처와 데이터 활용 조건을 명확히 확인하려 할 것이며, 기관들은 투명한 협업 방식을 채택할 가능성이 높습니다. AI의 수학적 추론 능력이 빠르게 발전하는 가운데, 평가의 공정성과 신뢰성을 확보하는 것이 연구 및 상용화 모두에서 중요해질 것입니다.
© 2025 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
