마이크론이 소비자용 메모리 브랜드인 크루셜(Crucial)을 종료한다고 12일(현지시각) 공식 발표했다. 이 결정은 2025년 12월 초에 처음 발표되었으며, 소비자 시장에서의 직접적인 활동을 중단하는 대신, 주문자 상표 부착 생산(OEM) 채널을 통해 저전력 더블 데이터 레이트 5(LPDDR5) 메모리를 계속 공급할 것이라고 밝혔다. 이는 AI 데이터 센터의 급증하는 수요에 대한 전략적 대응으로, 마이크론은 여전히 소비자를 지원하기 위해 노력하고 있다고 강조했다.
AI 데이터 센터의 메모리 수요는 폭발적으로 증가하고 있다. 인공지능 관련 작업을 수행하기 위해 설계된 대규모 데이터 센터는 대량의 동적 임의 접근 메모리(DRAM
DRAM
DRAM(Dynamic Random Access Memory)은 현대 디지털 시스템의 핵심 부품으로, 컴퓨터, 스마트폰, 서버 등 다양한 전자기기에서 데이터를 임시로 저장하는 역할을 한다. 이 문서는 DRAM의 기본 개념부터 역사, 작동 원리, 다양한 유형, 주요 활용 사례, 현재 시장 동향 및 미래 전망까지 포괄적으로 다룬다.
목차
1. DRAM 개념 정의
2. DRAM의 역사 및 발전 과정
3. DRAM의 핵심 기술 및 원리
4. DRAM의 주요 유형 및 분류
5. DRAM의 주요 활용 사례 및 응용
6. DRAM의 현재 동향
7. DRAM의 미래 전망
1. DRAM 개념 정의
DRAM은 Dynamic Random Access Memory의 약자로, 컴퓨터 및 전자기기에서 데이터를 임시로 저장하고 처리하는 데 사용되는 휘발성 반도체 메모리이다. 여기서 'Dynamic(동적)'이라는 용어는 메모리 셀에 저장된 전하가 시간이 지남에 따라 자연스럽게 누설되어 데이터가 손실될 수 있으므로, 데이터 유지를 위해 주기적인 재충전(refresh) 작업이 필수적임을 의미한다. 반면, 'Random Access(랜덤 액세스)'는 메모리 내의 어떤 데이터 위치에도 직접적이고 거의 동일한 시간 내에 접근할 수 있음을 나타낸다. 이는 순차적으로만 접근 가능한 자기 테이프와 같은 저장 장치와 대비되는 특징이다. 'Memory(메모리)'는 정보를 저장하는 장치임을 뜻한다.
각 DRAM 메모리 셀은 일반적으로 하나의 트랜지스터(Transistor)와 하나의 커패시터(Capacitor)로 구성되어 있다. 커패시터는 전하를 저장하여 0과 1의 이진 데이터를 표현하며, 트랜지스터는 이 커패시터에 데이터를 읽고 쓰는 스위치 역할을 한다. 커패시터에 전하가 충전되면 '1', 전하가 없으면 '0'으로 인식하는 방식이다. 하지만 커패시터는 완벽한 절연체가 아니므로 저장된 전하가 시간이 지남에 따라 점차 방전된다. 마치 물이 새는 양동이와 같아서, 물이 완전히 비워지기 전에 주기적으로 물을 채워줘야 하는 것처럼, DRAM도 데이터 손실을 막기 위해 수 밀리초(ms)마다 저장된 전하를 읽어 다시 쓰는 재충전 과정이 필요하다. 이러한 동적인 특성 때문에 DRAM은 SRAM(Static Random Access Memory)과 구별되며, SRAM은 플립플롭 회로를 사용하여 전원이 공급되는 한 데이터를 유지하므로 재충전이 필요 없다. 그러나 SRAM은 DRAM보다 셀당 더 많은 트랜지스터를 사용하기 때문에 집적도가 낮고 비용이 비싸다는 단점이 있다. 따라서 DRAM은 고용량과 저비용이 중요한 메인 메모리 분야에서 주로 사용된다.
2. DRAM의 역사 및 발전 과정
DRAM의 역사는 현대 컴퓨팅의 발전과 궤를 같이한다. 1966년, IBM 왓슨 연구소의 로버트 데나드(Robert Dennard) 박사는 단일 트랜지스터와 단일 커패시터(1T1C) 셀 구조를 기반으로 하는 DRAM의 기본 개념을 발명하고 특허를 출원했다. 이는 당시 자기 코어 메모리나 SRAM에 비해 훨씬 높은 집적도를 구현할 수 있는 혁신적인 아이디어였다.
이후 1970년, 인텔(Intel)은 데나드 박사의 아이디어를 상용화하여 세계 최초의 상업용 DRAM인 'Intel 1103'을 출시했다. 1K비트(1024비트) 용량의 이 칩은 당시 컴퓨터의 메인 메모리 시장을 빠르게 대체하며 DRAM 시대의 서막을 알렸다.
초기 DRAM은 CPU와 비동기적으로 작동하는 비동기식 DRAM(ADRAM) 형태였다. 이는 CPU의 클록 신호와 독립적으로 작동하여, 메모리 컨트롤러가 주소와 제어 신호를 보내면 메모리가 응답하는 방식이었다. 그러나 CPU 속도가 급격히 빨라지면서 비동기 방식은 데이터 처리 속도 병목 현상을 야기하게 되었다.
이러한 한계를 극복하기 위해 1990년대 초, 동기식 DRAM(SDRAM)이 등장했다. SDRAM은 CPU의 클록 신호에 맞춰 동기적으로 작동함으로써 데이터 전송 효율을 크게 향상시켰다. 특히, 1992년 삼성전자가 SDRAM을 개발하고, 1993년 국제반도체표준협의기구(JEDEC)에서 SDRAM을 표준으로 채택하면서 동기식 DRAM 시대가 본격적으로 열렸다.
SDRAM 이후, 데이터 전송 속도를 더욱 높이기 위한 기술 발전이 지속되었다. 2000년대 초반에는 클록의 상승 및 하강 에지 양쪽에서 데이터를 전송하는 DDR(Double Data Rate) SDRAM이 등장하며 대역폭을 두 배로 늘렸다. 이후 DDR2, DDR3, DDR4, 그리고 현재 주력으로 사용되는 DDR5에 이르기까지, 각 세대는 더 높은 클록 속도, 더 낮은 전력 소비, 그리고 더 큰 용량을 제공하며 발전해왔다.
모바일 기기 시장의 성장과 함께 저전력 특성을 강화한 LPDDR(Low Power Double Data Rate) 계열 DRAM이 개발되었고, 고성능 그래픽 처리 및 인공지능 연산에 특화된 GDDR(Graphics Double Data Rate)과 HBM(High Bandwidth Memory) 등 특정 응용 분야에 최적화된 DRAM도 등장하며, DRAM은 현대 디지털 사회의 핵심 인프라로 자리매김하게 되었다.
3. DRAM의 핵심 기술 및 원리
DRAM의 핵심은 데이터를 저장하는 최소 단위인 메모리 셀에 있다. 각 DRAM 메모리 셀은 앞서 언급했듯이 하나의 트랜지스터(1T)와 하나의 커패시터(1C)로 구성된다. 이 1T1C 구조는 DRAM이 높은 집적도를 달성하고 대용량 메모리를 저렴하게 생산할 수 있는 기반이 된다.
3.1. 메모리 셀 구조 및 데이터 저장 원리
커패시터는 전하를 저장하는 부품으로, 전하가 충전되면 논리적인 '1'을, 전하가 방전되거나 없으면 '0'을 나타낸다. 트랜지스터는 스위치 역할을 하여, 커패시터에 전하를 쓰고(충전) 읽는(방전 여부 확인) 것을 제어한다. 이 트랜지스터는 워드라인(Word Line)과 비트라인(Bit Line)이라는 두 가지 주요 라인에 연결된다.
워드라인 (Word Line): 메모리 셀의 트랜지스터 게이트에 연결되어, 해당 셀을 선택하고 트랜지스터를 켜거나 끄는 역할을 한다. 워드라인이 활성화되면 해당 라인에 연결된 모든 셀의 트랜지스터가 켜진다.
비트라인 (Bit Line): 메모리 셀의 커패시터에 연결되어, 데이터를 읽거나 쓸 때 전하를 전달하는 통로 역할을 한다. 비트라인은 센스 앰프(Sense Amplifier)에 연결되어 커패시터의 미세한 전하 변화를 감지하고 증폭한다.
데이터를 쓸 때는, 워드라인을 활성화하여 트랜지스터를 켠 다음, 비트라인을 통해 원하는 전압(전하)을 커패시터에 가하여 '1' 또는 '0'을 저장한다. 데이터를 읽을 때는, 워드라인을 활성화하여 트랜지스터를 켠 다음, 커패시터에 저장된 전하가 비트라인으로 흘러나오게 한다. 이 미세한 전하 변화를 센스 앰프가 감지하고 증폭하여 데이터 '1' 또는 '0'을 판독한다. 이때, 데이터를 읽는 과정에서 커패시터의 전하가 소모되므로, 읽기 작업 후에는 반드시 원래의 데이터를 다시 써주는(재충전하는) 과정이 필요하다. 이를 '읽기 후 쓰기(Read-after-Write)' 또는 '비파괴 읽기(Non-destructive Read)'라고 한다.
3.2. 리프레시(Refresh) 과정
DRAM의 가장 중요한 특징이자 핵심 원리 중 하나는 주기적인 리프레시(Refresh)이다. 커패시터에 저장된 전하는 시간이 지남에 따라 누설되어 점차 사라진다. 마치 물이 새는 양동이에 물을 계속 채워 넣어야 하듯이, DRAM은 저장된 전하가 완전히 사라지기 전에 주기적으로 모든 셀의 데이터를 읽어 다시 써주는 재충전 작업을 수행해야 한다. 이 과정이 없으면 데이터는 수 밀리초(ms) 내에 손실될 수 있다.
리프레시는 메모리 컨트롤러에 의해 자동으로 수행되며, 일반적으로 수십 밀리초(예: 64ms)마다 한 번씩 모든 메모리 셀을 대상으로 진행된다. 리프레시 방식에는 여러 가지가 있지만, 대표적으로는 특정 행(row)을 순차적으로 활성화하여 해당 행의 모든 셀을 동시에 재충전하는 '행 리프레시(Row Refresh)' 방식이 있다. 리프레시 주기 동안에는 해당 메모리 영역에 대한 데이터 읽기/쓰기 작업이 일시적으로 중단될 수 있어, 전체 시스템 성능에 미미한 영향을 미치기도 한다. 그러나 이러한 리프레시 메커니즘 덕분에 DRAM은 SRAM보다 훨씬 높은 집적도와 저렴한 비용으로 대용량 메모리를 제공할 수 있게 된다.
4. DRAM의 주요 유형 및 분류
DRAM은 작동 방식과 성능 특성에 따라 다양한 유형으로 분류된다. 크게 시스템 버스와의 동기화 여부에 따라 비동기식 DRAM(ADRAM)과 동기식 DRAM(SDRAM)으로 나눌 수 있으며, SDRAM은 다시 성능과 용도에 따라 여러 세대와 특수 목적으로 세분화된다.
4.1. 비동기식 DRAM (ADRAM)
ADRAM(Asynchronous DRAM)은 초기 DRAM 형태로, CPU의 클록 신호와 동기화되지 않고 독립적으로 작동한다. 메모리 컨트롤러가 주소와 제어 신호를 보내면, 메모리 칩은 내부적으로 데이터를 처리하고 준비가 되면 응답한다. 이 방식은 메모리 접근 타이밍이 가변적이며, CPU 속도가 빨라질수록 메모리 대기 시간이 길어져 성능 병목 현상을 유발하는 단점이 있다. 현재는 대부분 SDRAM으로 대체되어 거의 사용되지 않는다.
4.2. 동기식 DRAM (SDRAM)
SDRAM(Synchronous DRAM)은 시스템 클록 신호에 동기화되어 작동하는 DRAM이다. 이는 CPU와 메모리 간의 데이터 전송 타이밍을 예측 가능하게 하여 효율성을 크게 높였다. SDRAM은 파이프라이닝(Pipelining) 기법을 사용하여 다음 명령을 미리 준비함으로써 연속적인 데이터 전송 속도를 향상시켰다. SDRAM의 등장은 컴퓨터 시스템의 전반적인 성능 향상에 결정적인 역할을 했다.
4.3. DDR SDRAM 계열
DDR(Double Data Rate) SDRAM은 SDRAM의 진화된 형태로, 클록 신호의 상승 에지(rising edge)와 하강 에지(falling edge) 양쪽에서 데이터를 전송하여 단일 클록 사이클 동안 두 배의 데이터를 처리한다. 이로 인해 데이터 전송 대역폭이 크게 증가했다. DDR SDRAM은 여러 세대에 걸쳐 발전해왔으며, 각 세대는 더 높은 클록 속도, 더 낮은 전력 소비, 그리고 더 큰 용량을 제공한다.
DDR1 (DDR SDRAM): 2000년대 초반에 등장하여 SDRAM을 대체했다. 최대 클록 속도는 400MHz, 데이터 전송 속도는 3.2GB/s였다.
DDR2 SDRAM: DDR1보다 더 높은 클록 속도와 더 낮은 전력 소비를 제공한다. 프리페치 버퍼(prefetch buffer) 크기를 2비트에서 4비트로 늘려 내부적으로 더 많은 데이터를 미리 가져올 수 있게 했다.
DDR3 SDRAM: DDR2보다 더 낮은 전압(1.5V)에서 작동하며, 프리페치 버퍼가 8비트로 확장되어 효율성이 더욱 향상되었다. 최대 클록 속도는 2133MHz에 달했다.
DDR4 SDRAM: 2014년경 상용화되었으며, DDR3보다 더 낮은 전압(1.2V)과 더 높은 클록 속도(최대 3200MHz 이상)를 제공한다. 모듈당 용량도 크게 증가했다.
DDR5 SDRAM: 2020년 JEDEC에 의해 표준화되었으며, DDR4 대비 두 배의 대역폭(최대 6400MHz 이상), 더 낮은 전력 소비(1.1V), 그리고 향상된 전력 관리 기능을 제공한다. 온다이 ECC(On-Die ECC) 기능을 통해 신뢰성도 높였다. 현재 PC 및 서버 시장의 주력으로 전환되고 있다.
DDR6 SDRAM: 현재 개발 중인 차세대 표준으로, DDR5의 두 배에 달하는 속도와 대역폭을 목표로 한다. 2026년 이후 상용화될 것으로 예상되며, AI 및 고성능 컴퓨팅 환경에 필수적인 역할을 할 것으로 전망된다.
4.4. 특수 목적 DRAM
특정 응용 분야의 요구사항을 충족하기 위해 최적화된 DRAM 유형도 존재한다.
LPDDR (Low Power Double Data Rate) SDRAM: 주로 스마트폰, 태블릿, 노트북 등 모바일 및 휴대용 기기에 사용된다. 저전력 소비에 중점을 두어 배터리 수명을 연장하는 데 기여한다. LPDDR4, LPDDR5, LPDDR5X 등 지속적으로 발전하고 있다.
GDDR (Graphics Double Data Rate) SDRAM: 그래픽 카드(GPU)에 특화된 고대역폭 메모리이다. 대량의 그래픽 데이터를 빠르게 처리하기 위해 매우 높은 클록 속도와 넓은 메모리 버스를 특징으로 한다. GDDR6, GDDR6X 등이 최신 그래픽 카드에 적용되고 있다.
HBM (High Bandwidth Memory): 고성능 컴퓨팅(HPC), AI 가속기, 서버 등 극한의 대역폭이 요구되는 분야에 사용된다. 여러 개의 DRAM 다이(die)를 수직으로 적층하고 실리콘 관통 전극(TSV)으로 연결하여 매우 넓은 데이터 버스를 구현한다. 이를 통해 기존 GDDR보다 훨씬 높은 대역폭을 제공하며, 전력 효율성도 우수하다. HBM2, HBM2E, HBM3, HBM3E 등이 상용화되어 있으며, HBM4도 개발 중이다.
5. DRAM의 주요 활용 사례 및 응용
DRAM은 현대 디지털 시스템의 거의 모든 곳에 존재하며, 그 활용 범위는 매우 광범위하다. 프로세서가 데이터를 빠르게 처리하고 접근할 수 있도록 돕는 핵심적인 역할을 수행한다.
5.1. 컴퓨터 및 서버의 메인 메모리 (RAM)
가장 대표적인 DRAM의 활용 사례는 개인용 컴퓨터(PC), 노트북, 워크스테이션, 그리고 서버의 메인 메모리(RAM)이다. CPU는 저장 장치(SSD, HDD)에서 직접 데이터를 처리하는 것이 아니라, DRAM에 로드된 데이터를 사용하여 작업을 수행한다. DRAM은 SSD나 HDD보다 훨씬 빠른 속도로 데이터를 읽고 쓸 수 있어, 운영체제, 응용 프로그램, 현재 작업 중인 파일 등을 임시로 저장하여 CPU가 효율적으로 작동하도록 지원한다. DDR4와 DDR5 SDRAM이 주로 사용되며, 서버 환경에서는 ECC(Error-Correcting Code) 기능을 갖춘 DRAM이 데이터 무결성을 위해 필수적으로 사용된다.
5.2. 모바일 기기 (스마트폰, 태블릿)
스마트폰, 태블릿, 스마트워치 등 휴대용 기기에서는 저전력 특성이 중요한 LPDDR(Low Power Double Data Rate) DRAM이 주로 사용된다. LPDDR은 배터리 수명을 극대화하면서도 모바일 애플리케이션의 요구 사항을 충족하는 성능을 제공한다. 최신 스마트폰에는 LPDDR5 또는 LPDDR5X DRAM이 탑재되어 고화질 게임, 고해상도 비디오 스트리밍, 복잡한 AI 연산 등을 원활하게 처리한다.
5.3. 그래픽 카드 및 게임 콘솔
고성능 그래픽 처리 장치(GPU)를 사용하는 그래픽 카드와 게임 콘솔에는 GDDR(Graphics Double Data Rate) DRAM이 필수적으로 사용된다. GDDR은 매우 높은 대역폭을 제공하여 대량의 텍스처, 셰이더, 프레임 버퍼 데이터를 GPU가 빠르게 접근하고 처리할 수 있도록 돕는다. 이는 고해상도 게임, 3D 렌더링, 가상 현실(VR) 등 시각적으로 복잡한 애플리케이션에서 부드럽고 실감 나는 경험을 제공하는 데 결정적인 역할을 한다. 최신 그래픽 카드에는 GDDR6 또는 GDDR6X가 탑재된다.
5.4. 인공지능(AI) 가속기 및 고성능 컴퓨팅 (HPC)
인공지능(AI) 모델 훈련, 딥러닝 추론, 빅데이터 분석, 과학 시뮬레이션 등 고성능 컴퓨팅(HPC) 환경에서는 HBM(High Bandwidth Memory)이 핵심적인 역할을 한다. HBM은 여러 DRAM 다이를 수직으로 적층하고 TSV(Through Silicon Via) 기술로 연결하여 극도로 넓은 대역폭을 제공한다. 이는 대규모 병렬 연산을 수행하는 AI 가속기(GPU, NPU)가 방대한 양의 데이터를 지연 없이 처리할 수 있도록 하여, AI 기술 발전의 중요한 기반이 되고 있다. HBM3 및 HBM3E는 현재 가장 진보된 HBM 기술로, 엔비디아(NVIDIA)의 최신 AI 가속기 등에 탑재되어 있다.
5.5. 네트워크 장비 및 임베디드 시스템
라우터, 스위치 등 네트워크 장비는 대량의 패킷 데이터를 빠르게 처리하고 버퍼링하기 위해 DRAM을 사용한다. 또한, 자동차의 인포테인먼트 시스템, 산업용 제어 장치, 스마트 가전 등 다양한 임베디드 시스템에서도 시스템의 요구사항에 맞춰 최적화된 DRAM이 탑재되어 안정적인 성능을 제공한다.
6. DRAM의 현재 동향
2020년대 중반에 접어들면서 DRAM 시장은 AI 기술의 폭발적인 성장과 함께 중요한 변화를 겪고 있다. 특히 고대역폭 메모리(HBM)의 수요가 급증하고 있으며, 범용 D램 또한 새로운 세대로의 전환이 가속화되고 있다.
6.1. AI 시대의 HBM 수요 폭증
인공지능(AI) 기술의 발전은 DRAM 시장에 가장 큰 영향을 미치는 요인 중 하나이다. 특히 대규모 언어 모델(LLM)과 같은 복잡한 AI 모델의 훈련 및 추론에는 엄청난 양의 데이터 처리와 고대역폭이 요구된다. 이에 따라 HBM(High Bandwidth Memory)의 수요가 폭발적으로 증가하고 있다. 시장조사업체 가트너(Gartner)에 따르면, 2024년 HBM 시장은 전년 대비 100% 이상 성장할 것으로 예상되며, 2027년까지 연평균 20% 이상의 성장률을 보일 것으로 전망된다. 삼성전자, SK하이닉스, 마이크론 등 주요 메모리 제조사들은 HBM 생산 능력 확대를 위해 대규모 투자를 진행하고 있으며, HBM3E(Extended)와 같은 차세대 제품 개발 및 양산에 집중하고 있다.
6.2. DDR5 전환 가속화
PC 및 서버용 범용 DRAM 시장에서는 DDR5 SDRAM으로의 전환이 가속화되고 있다. DDR5는 DDR4 대비 약 두 배의 대역폭과 향상된 전력 효율성을 제공하여, 최신 CPU 및 플랫폼의 성능을 최대한 활용하는 데 필수적이다. 2023년부터 DDR5의 채택률이 점차 증가하기 시작했으며, 2024년에는 전체 DRAM 시장에서 DDR5의 비중이 더욱 확대될 것으로 예상된다. 특히 서버 시장에서는 AI 및 데이터센터 워크로드 증가로 인해 DDR5의 고성능 및 고용량 특성이 더욱 중요해지고 있다.
6.3. LPDDR 및 GDDR 기술 발전
모바일 기기용 LPDDR과 그래픽 카드용 GDDR 역시 지속적으로 발전하고 있다. 최신 스마트폰에는 LPDDR5X가 탑재되어 더 빠른 속도와 향상된 전력 효율을 제공하며, 이는 모바일 AI 기능 및 고성능 앱 구동에 기여한다. 그래픽 카드 시장에서는 GDDR6X가 고성능 GPU에 적용되어 극한의 그래픽 처리 대역폭을 제공하고 있다. NVIDIA는 GDDR6X를 통해 전례 없는 게임 및 렌더링 성능을 구현하고 있다.
6.4. 3D DRAM 및 신기술 연구
기존 2D 평면 구조의 DRAM 미세화는 물리적 한계에 도달하고 있다. 이를 극복하기 위해 3D DRAM과 같은 새로운 아키텍처 연구가 활발히 진행 중이다. 3D DRAM은 메모리 셀을 수직으로 쌓아 올려 집적도를 높이는 기술로, 고용량과 고성능을 동시에 달성할 수 있는 잠재력을 가지고 있다. 또한, 새로운 재료 및 셀 구조 개발을 통해 전력 효율을 개선하고 데이터 저장 안정성을 높이려는 노력도 계속되고 있다.
6.5. 시장 변동성 및 공급망
DRAM 시장은 주기적인 공급 과잉과 부족을 겪는 경향이 있다. 2022년 하반기부터 2023년까지는 수요 부진으로 인한 공급 과잉과 가격 하락이 있었으나, 2024년부터는 AI 수요 증가와 DDR5 전환 가속화로 인해 시장 회복 및 가격 상승이 예상된다. 주요 메모리 제조사들은 이러한 시장 변동성에 대응하기 위해 생산 전략을 조절하고, 특히 고부가가치 제품인 HBM 생산에 집중하는 추세이다.
7. DRAM의 미래 전망
DRAM 기술은 끊임없이 진화하며 미래 디지털 사회의 핵심 동력으로 자리매김할 것이다. 미세화 공정의 한계라는 도전 과제에 직면해 있지만, 이를 극복하기 위한 혁신적인 기술 개발이 활발히 이루어지고 있다.
7.1. 3D DRAM 및 차세대 셀 구조
현재의 평면(2D) DRAM 셀 구조는 물리적 미세화의 한계에 다다르고 있다. 이에 대한 해결책으로 3D DRAM 기술이 주목받고 있다. 3D DRAM은 메모리 셀을 수직으로 적층하여 단위 면적당 저장 용량을 획기적으로 늘리는 기술이다. 이는 낸드 플래시 메모리에서 이미 상용화된 3D 적층 기술과 유사하지만, DRAM의 특성상 구현 난이도가 훨씬 높다. 3D DRAM은 고용량뿐만 아니라 데이터 접근 경로를 단축하여 고성능을 구현하고, 전력 효율성도 개선할 수 있는 잠재력을 가지고 있다. 삼성전자, SK하이닉스 등 주요 제조사들은 3D DRAM의 상용화를 위한 연구 개발에 박차를 가하고 있다.
또한, 기존 1T1C 셀 구조를 대체하거나 보완할 수 있는 새로운 셀 구조 및 재료 연구도 진행 중이다. 예를 들어, 강유전체(Ferroelectric) 물질을 이용한 FeRAM(Ferroelectric RAM)이나 상변화 물질을 이용한 PRAM(Phase-change RAM) 등 차세대 비휘발성 메모리 기술과의 융합을 통해 DRAM의 한계를 극복하려는 시도도 이루어지고 있다.
7.2. HBM 기술의 지속적인 발전
AI, 머신러닝, 고성능 컴퓨팅(HPC) 시장의 성장은 HBM(High Bandwidth Memory)의 중요성을 더욱 부각시킬 것이다. HBM은 이미 HBM3E 단계에 도달했으며, 앞으로 HBM4, HBM5 등 더욱 진화된 형태로 발전할 것으로 예상된다. 차세대 HBM은 더 많은 DRAM 다이 적층, 더 넓은 인터페이스(예: 2048비트 이상), 그리고 더 높은 데이터 전송 속도를 통해 페타바이트(PB)급 데이터 처리량을 지원할 것이다. 이는 미래 AI 모델의 복잡성과 규모가 더욱 커짐에 따라 필수적인 요소가 될 것이다.
7.3. CXL(Compute Express Link)과의 시너지
CXL(Compute Express Link)은 CPU, GPU, 메모리 등 다양한 장치 간의 고속 인터커넥트 기술 표준으로, 메모리 확장 및 공유를 가능하게 한다. CXL 기술과 DRAM의 결합은 서버 및 데이터센터 아키텍처에 혁신을 가져올 것으로 기대된다. CXL을 통해 여러 CPU가 하나의 대용량 DRAM 풀을 공유하거나, DRAM을 CPU와 더 가깝게 배치하여 지연 시간을 줄이는 등 유연하고 효율적인 메모리 시스템 구축이 가능해진다. 이는 AI, 클라우드 컴퓨팅 환경에서 메모리 병목 현상을 해결하고 시스템 성능을 극대화하는 데 중요한 역할을 할 것이다.
7.4. AI 및 자율주행 등 미래 기술과의 융합
인공지능, 자율주행, 사물 인터넷(IoT), 5G/6G 통신 등 미래 핵심 기술의 발전은 고성능, 고용량, 저전력 DRAM에 대한 수요를 지속적으로 증가시킬 것이다. 특히 엣지(Edge) AI 기기에서는 제한된 전력 내에서 복잡한 AI 연산을 수행해야 하므로, LPDDR과 같은 저전력 DRAM의 중요성이 더욱 커질 것이다. 자율주행 차량은 실시간으로 방대한 센서 데이터를 처리하고 AI 알고리즘을 실행해야 하므로, 고대역폭 및 고신뢰성 DRAM이 필수적이다. DRAM은 이러한 미래 기술의 성능과 효율성을 결정하는 핵심 요소로서 그 중요성이 더욱 증대될 것으로 전망된다.
결론적으로, DRAM은 단순한 데이터 저장 장치를 넘어, 현대 및 미래 디지털 시스템의 성능을 좌우하는 핵심 기술이다. 미세화의 한계를 극복하고 새로운 기술과의 융합을 통해 DRAM은 지속적으로 발전하며, 인류의 디지털 혁신을 이끄는 중요한 역할을 계속해 나갈 것이다.
참고 문헌
What is DRAM? - IBM. (n.d.). Retrieved from https://www.ibm.com/topics/dram
Dynamic Random Access Memory (DRAM) - GeeksforGeeks. (2023, November 28). Retrieved from https://www.geeksforgeeks.org/dynamic-random-access-memory-dram/
What is DRAM? How Dynamic RAM Works - Micron. (n.d.). Retrieved from https://www.micron.com/resources/data-science/what-is-dram
Robert Dennard - IBM. (n.d.). Retrieved from https://www.ibm.com/ibm/history/exhibits/builders/builders_dennard.html
The Intel 1103: The First Commercially Available DRAM - IEEE Spectrum. (2018, February 22). Retrieved from https://spectrum.ieee.org/the-intel-1103-the-first-commercially-available-dram
삼성전자, 30년간 메모리 반도체 1위 지켜온 비결은? - Samsung Newsroom. (2023, October 11). Retrieved from https://news.samsung.com/kr/%EC%82%BC%EC%84%B1%EC%A0%84%EC%9E%90-30%EB%85%84%EA%B0%84-%EB%A9%94%EB%AA%A8%EB%A6%AC-%EB%B0%98%EB%8F%84%EC%B2%B4-1%EC%9C%84-%EC%A7%80%EC%BC%9C%EC%98%A8-%EB%B9%84%EA%B2%B0%EC%9D%80
From DDR to DDR5: A Brief History of DRAM - TechSpot. (2022, November 11). Retrieved from https://www.techspot.com/article/2573-history-of-dram/
Types of DRAM - GeeksforGeeks. (2023, November 28). Retrieved from https://www.geeksforgeeks.org/types-of-dram/
How DRAM Works - Computer Hope. (2023, November 29). Retrieved from https://www.computerhope.com/jargon/d/dram.htm
DRAM Refresh - Wikipedia. (n.d.). Retrieved from https://en.wikipedia.org/wiki/DRAM_refresh
DRAM operation - TutorialsPoint. (n.d.). Retrieved from https://www.tutorialspoint.com/computer_fundamentals/computer_fundamentals_dram_operation.htm
DDR4 SDRAM - Wikipedia. (n.d.). Retrieved from https://en.wikipedia.org/wiki/DDR4_SDRAM
JEDEC Publishes DDR5 SDRAM Standard - JEDEC. (2020, July 14). Retrieved from https://www.jedec.org/news/pressreleases/jedec-publishes-ddr5-sdram-standard
DDR5 vs DDR4 RAM: What's the Difference? - Crucial. (n.d.). Retrieved from https://www.crucial.com/articles/about-memory/ddr5-vs-ddr4-ram
Samsung, SK Hynix, Micron: The Future of DRAM Is DDR6 - TechSpot. (2023, October 11). Retrieved from https://www.techspot.com/news/100451-samsung-sk-hynix-micron-future-dram-ddr6.html
HBM (High Bandwidth Memory) - Samsung Semiconductor. (n.d.). Retrieved from https://semiconductor.samsung.com/kr/dram/hbm/
What is RAM? - Kingston Technology. (n.d.). Retrieved from https://www.kingston.com/united-states/us/memory/ram
LPDDR5X DRAM - Samsung Semiconductor. (n.d.). Retrieved from https://semiconductor.samsung.com/kr/dram/lpddr/lpddr5x/
What is GDDR6X? - Micron. (n.d.). Retrieved from https://www.micron.com/products/dram-modules/gddr6x
HBM3E: The Next Generation of High Bandwidth Memory - SK Hynix. (2023, August 21). Retrieved from https://news.skhynix.com/hbm3e-the-next-generation-of-high-bandwidth-memory/
NVIDIA H100 GPU - NVIDIA. (n.d.). Retrieved from https://www.nvidia.com/en-us/data-center/h100/
Gartner Forecasts Worldwide Semiconductor Revenue to Grow 16.8% in 2024 - Gartner. (2023, December 11). Retrieved from https://www.gartner.com/en/newsroom/press-releases/2023-12-11-gartner-forecasts-worldwide-semiconductor-revenue-to-grow-16-8-percent-in-2024
삼성전자, HBM 생산능력 2.5배 확대…AI 반도체 시장 주도 - ZDNet Korea. (2024, January 10). Retrieved from https://zdnet.co.kr/view/?no=20240110090801
SK하이닉스, HBM3E 양산…AI 메모리 시장 선도 - SK Hynix Newsroom. (2024, March 19). Retrieved from https://news.skhynix.co.kr/sk하이닉스-hbm3e-양산ai-메모리-시장-선도/
DDR5 Market Share to Reach 50% in 2024 - TrendForce. (2023, November 28). Retrieved from https://www.trendforce.com/news/2023/11/28/ddr5-market-share-to-reach-50-in-2024/
NVIDIA GeForce RTX 40 Series Graphics Cards - NVIDIA. (n.d.). Retrieved from https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/
3D DRAM: The Future of Memory? - EE Times. (2023, September 20). Retrieved from https://www.eetimes.com/3d-dram-the-future-of-memory/
DRAM Market Outlook 2024 - IC Insights. (2024, January 17). Retrieved from https://www.icinsights.com/news/bulletins/DRAM-Market-Outlook-2024/
Samsung Electronics Unveils First-Ever 3D Stacked DRAM - Business Korea. (2023, March 15). Retrieved from https://www.businesskorea.co.kr/news/articleView.html?idxno=202029
Future of Memory: Emerging Non-Volatile Memory Technologies - SemiEngineering. (2023, October 23). Retrieved from https://semiengineering.com/future-of-memory-emerging-non-volatile-memory-technologies/
HBM4 to Double Bandwidth of HBM3E - TechInsights. (2023, December 12). Retrieved from https://www.techinsights.com/blog/hbm4-double-bandwidth-hbm3e
CXL (Compute Express Link) - What it is and why it matters - Intel. (n.d.). Retrieved from https://www.intel.com/content/www/us/en/developer/articles/technical/compute-express-link-cxl-what-it-is-and-why-it-matters.html
The Future of Memory in AI and Autonomous Driving - Micron. (2023, November 15). Retrieved from https://www.micron.com/insights/the-future-of-memory-in-ai-and-autonomous-driving
)를 필요로 하며, 이는 동적 임의 접근 메모리 공급 부족의 주요 원인 중 하나로 작용하고 있다. 동적 임의 접근 메모리는 컴퓨터 메모리의 일종으로, 고속 데이터 접근을 가능하게 하는 중요한 역할을 한다. 이러한 상황에서 마이크론은 소비자 시장을 축소하고 AI 데이터 센터에 집중하게 되었다.
마이크론의 마케팅 담당 부사장인 크리스토퍼 무어(Christopher Moore)는 “우리는 전 세계 소비자를 돕기 위해 노력하고 있다”고 말하며, 델(Dell)과 에이수스(Asus) 등 주요 PC 제조사에 메모리를 공급하고 있음을 강조했다. 마이크론은 주문자 상표 부착 생산 경로를 통해 저전력 더블 데이터 레이트 5 메모리를 계속 공급하며, 이는 소비자들이 간접적으로라도 메모리를 사용할 수 있도록 하는 전략이다.
그러나 마이크론의 최고경영자는 “현재 동적 임의 접근 메모리 공급은 수요의 절반에서 2/3 수준에 불과하다”고 언급했다. 이는 소비자들이 체감하는 동적 임의 접근 메모리 공급 부족의 실태를 잘 보여준다. 소비자들은 메모리 가격 상승과 공급 불안정을 경험하고 있으며, 이는 스스로 컴퓨터를 조립하는 사람들(DIY PC 빌더)과 게이머들에게 큰 영향을 미치고 있다.
마이크론은 이러한 공급 부족 문제를 해결하기 위해 뉴욕에 1,000억 달러 규모의 거대 제조 공장(메가팹)을 건설할 계획이며, 아이다호의 ID1 제조 공장(팹)은 2027년 중반에 가동될 예정이다. 그러나 실질적인 공급 증가는 2028년 이후에야 가능할 것으로 보인다. 이는 동적 임의 접근 메모리 공급 안정화가 장기적인 과제가 될 것임을 시사한다.
결국, 마이크론의 크루셜 브랜드 종료는 소비자 시장에 상당한 영향을 미칠 것이다. 메모리 가격 상승과 공급 부족은 소비자들에게 어려움을 줄 것이며, AI 메모리 수요가 메모리 산업의 중심으로 부상하면서 산업 구조 변화가 예상된다. 향후 동적 임의 접근 메모리 공급이 안정화되는 시점은 2028년 이후가 될 가능성이 크며, 이는 메모리 시장의 장기적 전망에 중요한 변수가 될 것이다.
© 2026 TechMore. All rights reserved. 무단 전재 및 재배포 금지.
